Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 9: 949744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304547

RESUMO

Objective: Cardiac mitochondrial dysfunction was found in ischemic heart disease (IHD). Hence, this study determined the effects of exercise training (ET) on cardiac mitochondrial respiration and cardiac mitochondrial quality control in IHD. Methods: A narrative synthesis was conducted after searching animal studies written in English in three databases (PubMed, Web of Science, and EMBASE) until December 2020. Studies that used aerobic exercise as an intervention for at least 3 weeks and had at least normal, negative (sedentary IHD), and positive (exercise-trained IHD) groups were included. The CAMARADES checklist was used to check the quality of the included studies. Results: The 10 included studies (CAMARADES score: 6-7/10) used swimming or treadmill exercise for 3-8 weeks. Seven studies showed that ET ameliorated cardiac mitochondrial respiratory function as manifested by decreased reactive oxygen species (ROS) production and increased complexes I-V activity, superoxide dismutase 2 (SOD2), respiratory control ratio (RCR), NADH dehydrogenase subunits 1 and 6 (ND1/6), Cytochrome B (CytB), and adenosine triphosphate (ATP) production. Ten studies showed that ET improved cardiac mitochondrial quality control in IHD as manifested by enhanced and/or controlled mitochondrial biogenesis, dynamics, and mitophagy. Four other studies showed that ET resulted in better cardiac mitochondrial physiological characteristics. Conclusion: Exercise training could improve cardiac mitochondrial functions, including respiration, biogenesis, dynamics, and mitophagy in IHD. Systematic review registration: https://www.crd.york.ac.uk/prospero/ display_record.php?RecordID=226817, identifier: CRD42021226817.

2.
J Microbiol Biotechnol ; 32(4): 493-503, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35283423

RESUMO

Forkhead transcription factor 3a (Foxo3a) is believed to be a tumor suppressor as its inactivation leads to cell transformation and tumor development. However, further investigation is required regarding the involvement of the activating transcription factor 3 (ATF3)-mediated Tat-interactive protein 60 (Tip60)/Foxo3a pathway in cancer cell apoptosis. This study demonstrated that Chelidonium majus upregulated the expression of ATF3 and Tip60 and promoted Foxo3a nuclear translocation, ultimately increasing the level of Bcl-2-associated X protein (Bax) protein. ATF3 overexpression stimulated Tip60 expression, while ATF3 inhibition by siRNA repressed Tip60 expression. Furthermore, siRNA-mediated Tip60 inhibition significantly promoted Foxo3a phosphorylation, leading to blockade of Foxo3a translocation into the nucleus. Thus, we were able to deduce that ATF3 mediates the regulation of Foxo3a by Tip60. Moreover, siRNA-mediated Foxo3a inhibition suppressed the expression of Bax and subsequent apoptosis. Taken together, our data demonstrate that Chelidonium majus induces SKOV-3 cell death by increasing ATF3 levels and its downstream proteins Tip60 and Foxo3a. This suggests a potential therapeutic role of Chelidonium majus against ovarian cancer.


Assuntos
Chelidonium , Proteína Forkhead Box O3/metabolismo , Neoplasias Ovarianas , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Apoptose/genética , Linhagem Celular Tumoral , Chelidonium/genética , Chelidonium/metabolismo , Feminino , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Produtos do Gene tat , Humanos , RNA Interferente Pequeno/genética , Proteína X Associada a bcl-2
3.
Front Pharmacol ; 12: 587021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393766

RESUMO

Background: Cervical cancer is the fourth most common malignant tumor among women worldwide. This study aimed to evaluate the efficacy of Astragalus-containing Chinese herbal medicine (CHM) combined with chemotherapy (CT) for the treatment of cervical cancer. Methods: Ten electronic databases including PubMed, Cochrane Library, Embase, Korean databases, and Chinese medical databases, were systematically searched up to July 2020. All randomized controlled trials using Astragalus-containing CHM combined with CT to treat cervical cancer were included. Results: A total of 19 trials were included in the analysis. Compared with the control group, the Astragalus-containing CHM combined with CT group showed a significantly increased tumor response (complete and partial response (CR and PR)) (risk ratio [RR] = 1.25, 95% confidence interval [CI]: 1.17-1.33, p < 0.00001) and Karnofsky performance score (KPS) (standardized mean difference [SMD] = 1.81, 95% CI: 1.46-2.17, p < 0.00001). This group also displayed remarkably reduced CT toxicity. Conclusion: Our study suggests that Astragalus-containing CHM might be a potential option for cervical cancer to enhance the curative efficacy and reduce CT toxicity.

4.
Aging (Albany NY) ; 13(16): 20495-20510, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432648

RESUMO

The anti-apoptotic and pro-survival effects of exercise training were evaluated on the early aged hypertensive rat cerebral cortex. The brain tissues were analysed from ten sedentary male Wistar Kyoto normotensive rats (WKY), ten sedentary spontaneously 12 month early aged hypertensive rats (SHR), and ten hypertensive rats undergoing treadmill exercise training (60 min/day, 5 days/week) for 12 weeks (SHR-EX). TUNEL-positive apoptotic cells, the expression levels of endonuclease G (EndoG) and apoptosis-inducing factor (AIF) (caspase-independent apoptotic pathway), Fas ligand, Fas death receptor, tumor necrosis factor (TNF)-α, TNF receptor 1, Fas-associated death domain, active caspase-8 and active caspase-3 (Fas-mediated apoptotic pathways) as well as t-Bid, Bax, Bak, Bad, cytochrome c, active caspase 9 and active caspase-3 (mitochondria-mediated apoptotic pathways) were reduced in SHR-EX compared with SHR. Pro-survival Bcl2, Bcl-xL, p-Bad, 14-3-3, insulin-like growth factor (IGF)-1, pPI3K/PI3K, and pAKT/AKT were significantly increased in SHR-EX compared to those in SHR. Exercise training suppressed neural EndoG/AIF-related caspase-independent, Fas/FasL-mediated caspase-dependent, mitochondria-mediated caspase-dependent apoptotic pathways as well as enhanced Bcl-2 family-related and IGF-1-related pro-survival pathways in the early aged hypertensive cerebral cortex. These findings indicated new therapeutic effects of exercise training on preventing early aged hypertension-induced neural apoptosis in cerebral cortex.


Assuntos
Apoptose , Córtex Cerebral/metabolismo , Terapia por Exercício , Hipertensão/fisiopatologia , Hipertensão/terapia , Animais , Caspases/genética , Caspases/metabolismo , Humanos , Hipertensão/genética , Hipertensão/metabolismo , Masculino , Ratos , Ratos Endogâmicos WKY , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Am J Chin Med ; : 1-18, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30284465

RESUMO

The cytokine C-X-C motif chemokine ligand 8 (CXCL8) is produced in the tumor microenvironment and has an important role in cancer pathogenesis. CXCL8 activates the nuclear factor (NF)-[Formula: see text]B signaling. However, the role of NF-[Formula: see text]B inactivation in apoptosis induced by negative regulation of CXCL8 remains unclear. Here, we assessed the effects of MRGX on the transcriptional activity of NF-[Formula: see text]B and the expression of tumor necrosis factor (TNF)-[Formula: see text]-stimulated target genes in liver cancer cells. Furthermore, we found that modified regular ginseng extract (MRGX)-mediated inhibition of NF-[Formula: see text]B signaling induced apoptosis. Importantly, MRGX exerted strong activity, inhibiting TNF-[Formula: see text]-induced expression of Akt and NF-[Formula: see text]B in a concentration-dependent manner. Furthermore, MRGX inhibited the TNF-[Formula: see text]-induced expression of genes encoding CXCL8, CXCL1, inducible nitric oxide synthase and intercellular adhesion molecule 1. MRGX also dowregulated Akt activation, and there was a significant decrease in Akt activation in HepG2 cells treated with CXCL8 siRNA. Conversely, CXCL8 overexpression increased Akt activation in MRGX-treated HepG2 cells. When Akt was silenced, MRGX treatment of HepG2 cells overexpressing CXCL8 decreased nuclear translocation of NF-[Formula: see text]B, whereas Akt overexpression increased nuclear translocation of NF-[Formula: see text]B in MRGX-treated HepG2 cells. Moreover, MRGX negatively regulated the TNF-[Formula: see text]-mediated I[Formula: see text]B/NF-[Formula: see text]B pathway to promote Bax activation, resulting in caspase-3 activation and apoptosis. Taken together, these results indicated that MRGX inhibited CXCL8-mediated Akt/NF-[Formula: see text]B signaling, which upregulated Bax activation and consequently induced apoptosis in HepG2 cells.

6.
Cell Death Discov ; 4: 62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29844932

RESUMO

The chemokine, CCL5, is a key mediator for the recruitment of immune cells into tumors and tissues. Akt/NF-κB signaling is significantly activated by CCL5. However, the role of NF-κB inactivation in apoptosis induced by negative regulation of CCL5 remains unclear. Here, we analyzed the effect of cordycepin on NF-κB activity in SKOV-3 cells and found that cordycepin-mediated inhibition of NF-κB signaling induced apoptosis in SKOV-3 cells via the serial activation of caspases. In addition, immune-blotting analysis showed that CCL5 is highly expressed in SKOV-3 cells. In addition to activating caspases, we show that, cordycepin prevents TNF-α-induced increase in CCL5, Akt, NF-κB, and c-FLIPL activation and that CCL5 siRNA could inhibit Akt/NF-κB signaling. Moreover, cordycepin negatively regulated the TNF-α-mediated IκB/NF-κB pathway and c-FLIPL activation to promote JNK phosphorylation, resulting in caspase-3 activation and apoptosis. Also, we show that c-FLIPL is rapidly lost in NF-κB activation-deficient. siRNA mediated c-FLIP inhibition increased JNK. SP600125, a selective JNK inhibitor, downregulated p-JNK expression in cordycepin-treated SKOV-3 cells, leading to suppression of cordycepin-induced apoptosis. Thus, these results indicate that cordycepin inhibits CCL5-mediated Akt/NF-κB signaling, which upregulates caspase-3 activation in SKOV-3 cells, supporting the potential of cordycepin as a therapeutic agent for ovarian cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA