Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 131023, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914235

RESUMO

Gradient anaerobic digestion reactor (GADR) can improve substrate utilization efficiency by solving the problem of the "short circuit" of materials. However, the substrate's composition significantly affects the reactor's performance. This study investigated the impact of food waste (FW) levels on corn straw's dry anaerobic digestion (AD) in a novel GADR. The results show that biomethane production can be improved by coupling urban and agricultural solid waste recycling. The mechanism is to increase the hydrolysis and acid production efficiency, and the abundance of enzymes related to methanogenesis. The maximum methane yield (494.2 mL CH4/g VS) and the highest anaerobic biodegradability (85.7 %) were obtained when the FW was added at 60 %. The co-digestion of FW and straw can improve the hydrolysis and acid production efficiency and methane yield, which improves the buffering capacity and stability of the system compared with the single digestion of FW.


Assuntos
Biocombustíveis , Reatores Biológicos , Metano , Zea mays , Hidrólise , Metano/metabolismo , Anaerobiose , Zea mays/química , Zea mays/metabolismo , Alimentos , Resíduos , Biodegradação Ambiental , Eliminação de Resíduos/métodos , Perda e Desperdício de Alimentos
2.
Front Microbiol ; 15: 1365289, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550857

RESUMO

Low temperature is one of the limiting factors for anaerobic digestion in cold regions. To improve the efficiency of anaerobic digestion for methane production in stationary reactors under low-temperature conditions, and to improve the structure of the microbial community for anaerobic digestion at low temperatures. We investigated the effects of different concentrations of exogenous Methanomicrobium (10, 20, 30%) and different volumes of carbon fiber carriers (0, 10, 20%) on gas production and microbial communities to improve the performance of low-temperature anaerobic digestion systems. The results show that the addition of 30% exogenous microorganisms and a 10% volume of carbon fiber carrier led to the highest daily (128.15 mL/g VS) and cumulative (576.62 mL/g VS) methane production. This treatment effectively reduced the concentrations of COD and organic acid, in addition to stabilizing the pH of the system. High-throughput sequencing analysis revealed that the dominant bacteria under these conditions were Acidobacteria and Firmicutes and the dominant archaea were Candidatus_Udaeobacter and Methanobacterium. While the abundance of microorganisms that metabolize organic acids was reduced, the functional abundance of hydrogenophilic methanogenic microorganisms was increased. Therefore, the synergistic effect of Methanomicrobium bioaugmentation with carbon fiber carriers can significantly improve the performance and efficiency of low-temperature anaerobic fermentation systems.

3.
Bioresour Technol ; 309: 123378, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32380381

RESUMO

Biological pretreatment is a promising technology to increase biogas yield. The methane yield and microbial community resulting from anaerobic digestion of maize straw after pretreatment of enzymes [extracted from Trichoderma viride (ETv) and Aspergillus sp. (EAs)] at different mixing ratios [5/0, 4/1, 3/2, 2/3, 1/4, 0/5] were evaluated. The methane yields from mixed enzymes pretreatment were higher than single enzymes pretreatments of ETv and EAs. The optimal enzymes mixing ratio of ETv and EAs was found to be 2/3, with the cumulative methane yield 512.64 mL/g TSadded, which was 31.74% higher than the control. Enzymatic pretreatment promoted an increase in the abundance of bacteria and archaea associated with cellulose decomposition. The majority of bacteria and archaea were assigned to Bacteroidetes, Firmicutes and Methanosaeta.


Assuntos
Trichoderma , Anaerobiose , Aspergillus , Biocombustíveis , Biomassa , Lignina , Metano
4.
Appl Biochem Biotechnol ; 189(3): 884-902, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31140052

RESUMO

The substrate to inoculum (S/I) ratio is crucial for the rapid start-up of solid-state anaerobic digestion (SS-AD) systems. In this study, the performance of methane production and microbial community structure were evaluated during co-digestion of rape straw (RS) and dairy manure (DM) at different S/I ratios (2:3, 1:1, 2:1, 3:1, and 4:1) in batch hemi-solid-state anaerobic digestion (HSS-AD) tests. The highest methane yield of 209.1 mL/g VSadded and highest volumetric methane production of 0.4 L/(L·d) were achieved at S/I ratios of 2:3 and 2:1, respectively. Lower S/I ratios (1:2, 1:1, and 2:1) steadily produced biogas throughout the AD period, while higher S/I ratios (3:1 and 4:1) failed to produce biogas during the initial stage of AD because of excess accumulation of volatile fatty acids and low pH. The predominant bacteria and archaea in stable digesters were Firmicutes and acetoclastic Methanosaeta, respectively, while Bacteroidetes predominated and the relative abundance of hydrogenotrophic Methanobacterium increased significantly in acidic digesters. Amounts of bacteria and archaea were inhibited in acidic digesters. Our results provide useful information for enhancing efficient methane production and advancing the understanding of the microbiome in HSS-AD of RS and DM at different S/I ratios.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Biocombustíveis/microbiologia , Reatores Biológicos/microbiologia , Brassica napus/química , Indústria de Laticínios , Esterco , Anaerobiose , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Volatilização
5.
J Microbiol Biotechnol ; 27(3): 524-534, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-27817188

RESUMO

The development and utilization of crop straw biogas resources can effectively alleviate the shortage of energy, environmental pollution, and other issues. This study performed a continuous batch test at 35°C to assess the methane production potential and volatile organic acid contents using the modified Gompertz equation. Illumina MiSeq platform sequencing, which is a sequencing method based on sequencing-by-synthesis, was used to compare the archaeal community diversity, and denaturing gradient gel electrophoresis (DGGE) was used to analyze the bacterial community diversity in rice straw, dry maize straw, silage maize straw, and tobacco straw. The results showed that cumulative gas production values for silage maize straw, rice straw, dry maize straw, and tobacco straw were 4,870, 4,032.5, 3,907.5, and 3,628.3 ml/g ·VS , respectively, after 24 days. Maximum daily gas production values of silage maize straw and rice straw were 1,025 and 904.17 ml/g ·VS, respectively, followed by tobacco straw and dry maize straw. The methane content of all four kinds of straws was > 60%, particularly that of silage maize straw, which peaked at 67.3%. Biogas production from the four kinds of straw was in the order silage maize straw > rice straw > dry maize straw > tobacco straw, and the values were 1,166.7, 1,048.4, 890, and 637.4 ml/g ·VS, respectively. The microbial community analysis showed that metabolism was mainly carried out by acetate-utilizing methanogens, and that Methanosarcina was the dominant archaeal genus in the four kinds of straw, and the DGGE bands belonged to the phyla Firmicutes, Bacteroidetes, and Chloroflexi. Silage maize is useful for biogas production because it contains four kinds of straw.


Assuntos
Biodegradação Ambiental , Biocombustíveis , Microbiologia Ambiental , Fermentação , Biodiversidade , Reatores Biológicos , Produtos Agrícolas , Metagenoma , Metagenômica , Metano/biossíntese , Microbiota , Compostos Orgânicos Voláteis
6.
J Basic Microbiol ; 46(1): 56-63, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16463319

RESUMO

The aim of this research was to identify nifH and nifHDKYE ' genes in twenty strains of N2-fixing heterotrophic bacteria isolated from rice fields in the Yangtze River Plain. Southern hybridization of the total DNA from each strain was performed with the Klebsiella pneumoniae nifHDKYE ' gene probe (6.2 kb Eco RI fragment from pSA30) and the Azospirillum brasilense nifH gene probe (0.6 kb Eco RI-Hin dIII fragment from pHU8). We found that Eco RI fragments of total DNA from Aeromonas hydrophila HY2, Bacillus azotoformans FD, Bacillus licheniformis NCH1, NCH5, WH4, Bacillus brevis NC2, Bacillus pumilus NC12, Bacillus cereus NCH2, Citrobacter freundii HY5, HY9, Derxia gummosa HZ5, Pseudomonas mendocina HZ1 and Pseudomonas pseudoalcaligenes WH3 were positively hybridized with both of the probes. Agrobacterium radiobacter HY17, Corynebacterium sp. HY12, YZ and Pseudomonas sp. HY11 had Eco RI fragments hybridized with the K. pneumoniae nifHDKYE ' gene probe. An Eco RI fragment of total DNA from Bacillus megaterium YY4 was positively hybridized to the A. brasilense nifH gene probe. No hybridization sign was found in the total DNA fragments from Alcaligenes cupidus YY6 and Corynebacterium sp. NC11 hybridized with either of the gene probes. The data provide the number and size of EcoRI fragments of the total DNA hybridized with the nif gene probes for these strains of rarely studied species, suggesting additional evidence for N2 fixing and nif gene diversity of N2-fixing bacteria in rice fields along the Yangtze River Plain.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/genética , Genes Bacterianos , Nitrogenase/genética , Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Southern Blotting , China , Eletroforese em Gel de Ágar , Fixação de Nitrogênio , Nitrogenase/isolamento & purificação , Oryza/microbiologia , Pseudomonas mendocina/enzimologia , Pseudomonas pseudoalcaligenes/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA