Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Exp Med ; 219(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35404389

RESUMO

Monocytes undergo phenotypic and functional changes in response to inflammatory cues, but the molecular signals that drive different monocyte states remain largely undefined. We show that monocytes acquire macrophage markers upon glomerulonephritis and may be derived from CCR2+CX3CR1+ double-positive monocytes, which are preferentially recruited, dwell within glomerular capillaries, and acquire proinflammatory characteristics in the nephritic kidney. Mechanistically, the transition to immature macrophages begins within the vasculature and relies on CCR2 in circulating cells and TNFR2 in parenchymal cells, findings that are recapitulated in vitro with monocytes cocultured with TNF-TNFR2-activated endothelial cells generating CCR2 ligands. Single-cell RNA sequencing of cocultures defines a CCR2-dependent monocyte differentiation path associated with the acquisition of immune effector functions and generation of CCR2 ligands. Immature macrophages are detected in the urine of lupus nephritis patients, and their frequency correlates with clinical disease. In conclusion, CCR2-dependent functional specialization of monocytes into macrophages begins within the TNF-TNFR2-activated vasculature and may establish a CCR2-based autocrine, feed-forward loop that amplifies renal inflammation.


Assuntos
Células Endoteliais , Monócitos , Receptores CCR2 , Receptores Tipo II do Fator de Necrose Tumoral , Humanos , Ligantes , Macrófagos , Receptores CCR2/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética
2.
Nat Commun ; 12(1): 4791, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373452

RESUMO

Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neutrófilos/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Apresentação de Antígeno/imunologia , Complexo Antígeno-Anticorpo , Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Movimento Celular , Proliferação de Células , Citocinas/imunologia , Células Dendríticas/imunologia , Endocitose , Humanos , Imunidade Inata , Imunoterapia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Espécies Reativas de Oxigênio , Transcriptoma
3.
J Clin Invest ; 127(10): 3810-3826, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28891817

RESUMO

The kidney glomerular capillaries are frequent sites of immune complex deposition and subsequent neutrophil accumulation in post-infectious and rapidly progressive glomerulonephritis. However, the mechanisms of neutrophil recruitment remain enigmatic, and there is no targeted therapeutic to avert this proximal event in glomerular inflammation. The uniquely human activating Fc receptor FcγRIIA promotes glomerular neutrophil accumulation and damage in anti-glomerular basement membrane-induced (anti-GBM-induced) glomerulonephritis when expressed on murine neutrophils. Here, we found that neutrophils are directly captured by immobilized IgG antibodies under physiological flow conditions in vitro through FcγRIIA-dependent, Abl/Src tyrosine kinase-mediated F-actin polymerization. Biophysical measurements showed that the lifetime of FcγRIIA-IgG bonds increased under mechanical force in an F-actin-dependent manner, which could enable the capture of neutrophils under physiological flow. Kidney intravital microscopy revealed that circulating neutrophils, which were similar in diameter to glomerular capillaries, abruptly arrested following anti-GBM antibody deposition via neutrophil FcγRIIA and Abl/Src kinases. Accordingly, inhibition of Abl/Src with bosutinib reduced FcγRIIA-mediated glomerular neutrophil accumulation and renal injury in experimental, crescentic anti-GBM nephritis. These data identify a pathway of neutrophil recruitment within glomerular capillaries following IgG deposition that may be targeted by bosutinib to avert glomerular injury.


Assuntos
Compostos de Anilina/farmacologia , Glomerulonefrite/imunologia , Imunoglobulina G/imunologia , Glomérulos Renais/imunologia , Neutrófilos/imunologia , Nitrilas/farmacologia , Quinolinas/farmacologia , Receptores de IgG/imunologia , Animais , Capilares/imunologia , Capilares/patologia , Glomerulonefrite/genética , Glomerulonefrite/patologia , Células HL-60 , Humanos , Glomérulos Renais/patologia , Camundongos , Camundongos Knockout , Neutrófilos/patologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/imunologia , Receptores de IgG/genética , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/imunologia
4.
J Leukoc Biol ; 100(3): 581-8, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26965632

RESUMO

The C-type lectin receptor dectin-1 and the integrin Mac-1 have key roles in controlling fungal infection. Here, we demonstrate that dectin-1- and Mac-1-induced activation of protein kinase Cδ in neutrophils, independent of the Card9 adaptor, is required for reactive oxygen species production and for intracellular killing upon Candida albicans uptake. Protein kinase Cδ was also required for zymosan-induced cytokine generation in neutrophils. In macrophages, protein kinase Cδ deficiency prevented fungi-induced reactive oxygen species generation but had no effect on activation of TGF-ß-activated kinase-1, an effector of Card9, or nuclear factor κB activation, nor did it affect phagolysosomal maturation, autophagy, or intracellular C. albicans killing. In vivo, protein kinase Cδ-deficient mice were highly susceptible to C. albicans and Aspergillus fumigatus infection, which was partially rescued with adoptively transferred wild-type neutrophils. Thus, protein kinase Cδ activation downstream of dectin-1 and Mac-1 has an important role in neutrophil, but not macrophage, functions required for host defense against fungal pathogens.


Assuntos
Aspergilose/imunologia , Candidíase/imunologia , Macrófagos/imunologia , Neutrófilos/imunologia , Proteína Quinase C-delta/fisiologia , Animais , Aspergilose/metabolismo , Aspergilose/microbiologia , Aspergillus fumigatus/imunologia , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Candida albicans/imunologia , Candidíase/metabolismo , Candidíase/microbiologia , Citocinas/metabolismo , Feminino , Lectinas Tipo C/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta
5.
Immunity ; 38(5): 1025-37, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23623383

RESUMO

Endothelial-dependent mechanisms of mononuclear cell influx are not well understood. We showed that acute stimulation of murine microvascular endothelial cells expressing the tumor necrosis factor receptors TNFR1 and TNFR2 with the soluble cytokine TNF led to CXCR3 chemokine generation. The TNF receptors signaled through interferon regulatory factor-1 (IRF1) to induce interferon-ß (IFN-ß) and subsequent autocrine signaling via the type I IFN receptor and the transcription factor STAT1. Both TNFR2 and TNFR1 were required for IRF1-IFNß signaling and, in human endothelial cells TNFR2 expression alone induced IFN-ß signaling and monocyte recruitment. In vivo, TNFR1 was required for acute renal neutrophil and monocyte influx after systemic TNF treatment, whereas the TNFR2-IRF1-IFN-ß autocrine loop was essential only for macrophage accumulation. In a chronic model of proliferative nephritis, IRF1 and renal-expressed TNFR2 were essential for sustained macrophage accumulation. Thus, our data identify a pathway in endothelial cells that selectively recruits monocytes during a TNF-induced inflammatory response.


Assuntos
Fator Regulador 1 de Interferon/metabolismo , Interferon beta/metabolismo , Monócitos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Animais , Comunicação Autócrina/imunologia , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Inflamação/imunologia , Fator Regulador 1 de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Nefrite/metabolismo , Neutrófilos/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Receptores CXCR3/biossíntese , Receptores Tipo I de Fatores de Necrose Tumoral/biossíntese , Receptores Tipo II do Fator de Necrose Tumoral/biossíntese , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
J Am Soc Nephrol ; 23(3): 507-15, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22266663

RESUMO

Levels of proinflammatory cytokines associate with risk for developing type 2 diabetes but whether chronic inflammation contributes to the development of diabetic complications, such as ESRD, is unknown. In the 1990s, we recruited 410 patients with type 2 diabetes for studies of diabetic nephropathy and recorded their characteristics at enrollment. During 12 years of follow-up, 59 patients developed ESRD (17 per 1000 patient-years) and 84 patients died without ESRD (24 per 1000 patient-years). Plasma markers of systemic inflammation, endothelial dysfunction, and the TNF pathway were measured in the study entry samples. Of the examined markers, only TNF receptors 1 and 2 (TNFR1 and TNFR2) associated with risk for ESRD. These two markers were highly correlated, but ESRD associated more strongly with TNFR1. The cumulative incidence of ESRD for patients in the highest TNFR1 quartile was 54% after 12 years but only 3% for the other quartiles (P<0.001). In Cox proportional hazard analyses, TNFR1 predicted risk for ESRD even after adjustment for clinical covariates such as urinary albumin excretion. Plasma concentration of TNFR1 outperformed all tested clinical variables with regard to predicting ESRD. Concentrations of TNFRs moderately associated with death unrelated to ESRD. In conclusion, elevated concentrations of circulating TNFRs in patients with type 2 diabetes at baseline are very strong predictors of the subsequent progression to ESRD in subjects with and without proteinuria.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Nefropatias Diabéticas/epidemiologia , Nefropatias Diabéticas/etiologia , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/etiologia , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Adulto , Idoso , Biomarcadores/sangue , Estudos de Coortes , Nefropatias Diabéticas/fisiopatologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Incidência , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Transdução de Sinais/fisiologia , Taxa de Sobrevida
7.
J Am Soc Nephrol ; 23(3): 516-24, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22266664

RESUMO

Elevated plasma concentrations of TNF receptors 1 and 2 (TNFR1 and TNFR2) predict development of ESRD in patients with type 2 diabetes without proteinuria, suggesting these markers may contribute to the pathogenesis of renal decline. We investigated whether circulating markers of the TNF pathway determine GFR loss among patients with type 1 diabetes. We followed two cohorts comprising 628 patients with type 1 diabetes, normal renal function, and no proteinuria. Over 12 years, 69 patients developed estimated GFR less than 60 mL/min per 1.73 m(2) (16 per 1000 person-years). Concentrations of TNFR1 and TNFR2 were strongly associated with risk for early renal decline. Renal decline was associated only modestly with total TNFα concentration and appeared unrelated to free TNFα. The cumulative incidence of estimated GFR less than 60 mL/min per 1.73 m(2) for patients in the highest TNFR2 quartile was 60% after 12 years compared with 5%-19% in the remaining quartiles. In Cox proportional hazards analysis, patients with TNFR2 values in the highest quartile were threefold more likely to experience renal decline than patients in the other quartiles (hazard ratio, 3.0; 95% confidence interval, 1.7-5.5). The risk associated with high TNFR1 values was slightly less than that associated with high TNFR2 values. TNFR levels were unrelated to baseline free TNFα level and remained stable over long periods within an individual. In conclusion, early GFR loss in patients with type 1 diabetes without proteinuria is strongly associated with circulating TNF receptor levels but not TNFα levels (free or total).


Assuntos
Diabetes Mellitus Tipo 1/complicações , Nefropatias/epidemiologia , Nefropatias/etiologia , Falência Renal Crônica/epidemiologia , Falência Renal Crônica/etiologia , Receptores Tipo II do Fator de Necrose Tumoral/sangue , Receptores Tipo I de Fatores de Necrose Tumoral/sangue , Adulto , Biomarcadores/sangue , Doença Crônica , Estudos de Coortes , Feminino , Seguimentos , Taxa de Filtração Glomerular/fisiologia , Humanos , Rim/fisiopatologia , Nefropatias/fisiopatologia , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Valor Preditivo dos Testes , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Índice de Gravidade de Doença , Transdução de Sinais/fisiologia
8.
Cell Host Microbe ; 10(6): 603-15, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22177564

RESUMO

Resistance to fungal infections is attributed to engagement of host pattern-recognition receptors, notably the ß-glucan receptor Dectin-1 and the integrin Mac-1, which induce phagocytosis and antifungal immunity. However, the mechanisms by which these receptors coordinate fungal clearance are unknown. We show that upon ligand binding, Dectin-1 activates Mac-1 to also recognize fungal components, and this stepwise process is critical for neutrophil cytotoxic responses. Both Mac-1 activation and Dectin-1- and Mac-1-induced neutrophil effector functions require Vav1 and Vav3, exchange factors for RhoGTPases. Mac-1- or Vav1,3-deficient mice have increased susceptibility to systemic candidiasis that is not due to impaired neutrophil recruitment but defective intracellular killing of C. albicans yeast forms, and Mac-1 or Vav1,3 reconstitution in hematopoietic cells restores resistance. Our results demonstrate that antifungal immunity depends on Dectin-1-induced activation of Mac-1 functions that is coordinated by Vav proteins, a pathway that may localize cytotoxic responses of circulating neutrophils to infected tissues.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Lectinas Tipo C/imunologia , Antígeno de Macrófago 1/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-vav/imunologia , Receptores Imunológicos/imunologia , Animais , Candida albicans/fisiologia , Candidíase/genética , Candidíase/microbiologia , Feminino , Humanos , Lectinas Tipo C/genética , Antígeno de Macrófago 1/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/microbiologia , Fagocitose , Proteínas Proto-Oncogênicas c-vav/genética , Receptores Imunológicos/genética , Transdução de Sinais
9.
Arthritis Rheum ; 63(2): 467-78, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280001

RESUMO

OBJECTIVE: Rheumatoid arthritis culminates in joint destruction that, in mouse models of disease, is supported by innate immune molecules, including Fcγ receptors (FcγR) and complement. However, these findings may not be predictive of the outcome in humans, given the structural differences between murine and human activating FcγR on neutrophils, a prominent component of joint exudates. The aim of this study was to examine the role of human neutrophil FcγRIIa in the development of arthritis and probe the underlying mechanism by which FcγRIIa initiates disease. METHODS: K/BxN mouse serum transfer-induced arthritis was examined in mice expressing human FcγRIIa on neutrophils but lacking their own activating FcγR (γ-chain-deficient mice). The role of mast cells, complement (C3 and C5a), and CD18 integrins in FcγRIIa-initiated disease was examined using cell reconstitution approaches, inhibitors, and functional blocking antibodies, respectively. Crosstalk between the complement receptor C5aR and FcγRIIa on neutrophils was evaluated in vitro. RESULTS: The expression of human FcγRIIa on neutrophils was sufficient to restore susceptibility to K/BxN serum-induced neutrophil recruitment, synovitis, and bone destruction in γ-chain-deficient mice. Joint inflammation was robust and proceeded even in the absence of mast cells and vascular permeability, features shown to contribute to disease in wild-type mice. Neutrophil recruitment was dependent on the presence of a CD18 integrin, lymphocyte function-associated antigen 1, and C5aR. In addition, C5aR significantly enhanced FcγRIIa-mediated phagocytosis and oxidative burst in vitro. CONCLUSION: Human and murine activating FcγR on neutrophils are not functionally equivalent, and in humans, they may play a primary role in arthritis. Crosstalk between neutrophil C5aR and FcγRIIa is essential for disease progression, thus highlighting a new aspect of complement during the effector phase of inflammatory arthritis.


Assuntos
Artrite Experimental/imunologia , Neutrófilos/imunologia , Receptor da Anafilatoxina C5a/imunologia , Receptores de IgG/imunologia , Transferência Adotiva , Animais , Artrite Experimental/metabolismo , Transplante de Medula Óssea , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Fagocitose/imunologia , Receptor Cross-Talk/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Receptores de IgG/metabolismo , Especificidade da Espécie , Sinovite/imunologia , Sinovite/metabolismo
10.
J Immunol ; 180(9): 6279-87, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18424751

RESUMO

The signals linking neutrophil opsonic receptors, FcgammaRs and complement receptor 3 (Mac-1) to cellular cytotoxic responses are poorly understood. Furthermore, because a deficiency in activating FcgammaRs reduces both IgG-mediated neutrophil recruitment and tissue injury, the role of FcgammaRs specifically in mediating neutrophil cytotoxicity in vivo remains unclear. In this study, we demonstrate that neutrophil Vav 1 and 3, guanine exchange factors for Rac GTPases, are required for IgG/FcgammaR-mediated hemorrhage and edema in the reverse passive Arthus in the lung and skin. Rac GTPases are also required for development of the reverse passive Arthus reaction. A deficiency in Vav 1 and 3 does not affect neutrophil accumulation at the site of immune complex deposition, thus uncoupling neutrophil recruitment and tissue injury. Surprisingly, Vav and Rac proteins are dispensable for the development of the local Shwartzman reaction in vivo and phagocytosis of complement-opsonized RBC in vitro, processes strictly dependent on Mac-1 and complement C3. Thus, FcgammaR signaling through the Vav and Rac proteins in neutrophils is critical for stimulating immune complex disease while Vav- and Rac-independent pathways promote Mac-1/complement C3-dependent functions.


Assuntos
Complemento C3/imunologia , Imunoglobulina G/imunologia , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas c-vav/imunologia , Transdução de Sinais/imunologia , Animais , Complexo Antígeno-Anticorpo/imunologia , Reação de Arthus/genética , Reação de Arthus/imunologia , Complemento C3/genética , Edema/genética , Edema/imunologia , Hemorragia/genética , Hemorragia/imunologia , Imunoglobulina G/genética , Pulmão/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Fagocitose/imunologia , Proteínas Proto-Oncogênicas c-vav/genética , Receptores de IgG/genética , Receptores de IgG/imunologia , Fenômeno de Shwartzman/genética , Fenômeno de Shwartzman/imunologia , Pele/imunologia , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/imunologia
11.
Mol Biol Cell ; 19(3): 1261-70, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18172027

RESUMO

Rap1 GTPase activation by its cAMP responsive nucleotide exchange factor Epac present in endothelial cells increases endothelial cell barrier function with an associated increase in cortical actin. Here, Epac1 was shown to be responsible for these actin changes and to colocalize with microtubules in human umbilical vein endothelial cells. Importantly, Epac activation with a cAMP analogue, 8-pCPT-2'O-Me-cAMP resulted in a net increase in the length of microtubules. This did not require cell-cell interactions or Rap GTPase activation, and it was attributed to microtubule growth as assessed by time-lapse microscopy of human umbilical vein endothelial cell expressing fluorophore-linked microtubule plus-end marker end-binding protein 3. An intact microtubule network was required for Epac-mediated changes in cortical actin and barrier enhancement, but it was not required for Rap activation. Finally, Epac activation reversed microtubule-dependent increases in vascular permeability induced by tumor necrosis factor-alpha and transforming growth factor-beta. Thus, Epac can directly promote microtubule growth in endothelial cells. This, together with Rap activation leads to an increase in cortical actin, which has functional significance for vascular permeability.


Assuntos
Comunicação Celular , Células Endoteliais/enzimologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Microtúbulos/enzimologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Microtúbulos/efeitos dos fármacos , Modelos Biológicos , Transporte Proteico/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Proteínas rap1 de Ligação ao GTP/fisiologia
12.
J Immunol ; 177(9): 6388-97, 2006 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-17056570

RESUMO

Phagocytes generate reactive oxygen species, the regulation of which is important in eliminating ingested microbes while limiting tissue damage. Clustering of FcgammaRs results in the activation of Vav proteins, Rho/Rac guanine nucleotide exchange factors, and results in robust superoxide generation through the NADPH oxidase. In this study, studies in neutrophils isolated from mice deficient in Vav or Rac isoforms demonstrate a critical role for Vav3 in Rac2-dependent activation of the NADPH oxidase following FcgammaR clustering. However, studies in cytokine-primed cells revealed a strict requirement for Vav1 and Vav3 and Rac1 and Rac2 in the FcgammaR-mediated oxidative burst. In comparison, Vav was not essential for PMA or G protein-coupled receptor-mediated superoxide generation. The FcgammaR-mediated oxidative burst defect in Vav-deficient cells was linked to aberrant Rac activation as well as Rac- and actin-polymerization-independent, but PI3K-dependent, phosphorylation of the NADPH oxidase component p40(phox). In macrophages, Vav regulation of Rac GTPases was required specifically in FcgammaR-mediated activation of the oxidative burst, but not in phagocytosis. Thus, Vav proteins specifically couple FcgammaR signaling to NADPH oxidase function through a Rac-dependent as well as an unexpected Rac-independent signal that is proximal to NADPH oxidase activation and does not require actin polymerization.


Assuntos
NADH NADPH Oxirredutases/metabolismo , Neutrófilos/imunologia , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-vav/fisiologia , Receptores de IgG/metabolismo , Animais , Ativação Enzimática , Camundongos , Camundongos Mutantes , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADH NADPH Oxirredutases/química , Neutrófilos/efeitos dos fármacos , Neutrófilos/enzimologia , Fagocitose , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas/análise , Fosforilação , Proteínas Proto-Oncogênicas c-vav/genética , Explosão Respiratória , Transdução de Sinais , Superóxidos/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
13.
Trends Immunol ; 26(7): 388-95, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15922663

RESUMO

Beta2 integrins are leukocyte-specific membrane receptors that are crucial for host defense. They are best known for promoting neutrophil recruitment into inflamed tissue and pathogen phagocytosis. More recent data suggest that they also modulate neutrophil apoptosis. Neutrophils are terminally differentiated cells, which undergo constitutive apoptosis, and their apoptosis and clearance is required for the resolution of inflammation. Engagement of the beta2 integrin Mac-1 through its adhesion to its ligands, intercellular adhesion molecule-1 (ICAM-1) and fibrinogen, signals survival cues in neutrophils. However, in the presence of pro-apoptotic signals, such as tumor necrosis factor (TNF), Mac-1 engagement accelerates apoptosis. Furthermore, Mac-1-dependent phagocytosis of complement-opsonized pathogens triggers rapid neutrophil apoptosis, which is dependent on NADPH oxidase-generated reactive oxygen species and caspase activation. This is also associated with changes in the transcription profiles of pro- and anti-apoptotic genes. In this review, the beta2 integrin-dependent mechanisms that modulate the decision between life and death in neutrophils are overviewed.


Assuntos
Antígenos CD18/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Humanos , Inflamação/imunologia , Antígeno de Macrófago 1/metabolismo , Modelos Imunológicos , Fagocitose , Transdução de Sinais , Transcrição Gênica
14.
J Cell Biol ; 166(2): 273-82, 2004 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-15249579

RESUMO

Integrin regulation of neutrophils is essential for appropriate adhesion and transmigration into tissues. Vav proteins are Rho family guanine nucleotide exchange factors that become tyrosine phosphorylated in response to adhesion. Using Vav1/Vav3-deficient neutrophils (Vav1/3ko), we show that Vav proteins are required for multiple beta2 integrin-dependent functions, including sustained adhesion, spreading, and complement-mediated phagocytosis. These defects are not attributable to a lack of initial beta2 activation as Vav1/3ko neutrophils undergo chemoattractant-induced arrest on intercellular adhesion molecule-1 under flow. Accordingly, in vivo, Vav1/3ko leukocytes arrest on venular endothelium yet are unable to sustain adherence. Thus, Vav proteins are specifically required for stable adhesion. beta2-induced activation of Cdc42, Rac1, and RhoA is defective in Vav1/3ko neutrophils, and phosphorylation of Pyk2, paxillin, and Akt is also significantly reduced. In contrast, Vav proteins are largely dispensable for G protein-coupled receptor-induced signaling events and chemotaxis. Thus, Vav proteins play an essential role coupling beta2 to Rho GTPases and regulating multiple integrin-induced events important in leukocyte adhesion and phagocytosis.


Assuntos
Antígenos CD18/fisiologia , Proteínas de Ciclo Celular , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Neutrófilos/fisiologia , Animais , Adesão Celular , Quimiotaxia de Leucócito , Endotélio Vascular/citologia , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Knockout , Neutrófilos/química , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/fisiologia , Fagocitose , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Proteínas Proto-Oncogênicas c-vav , Transdução de Sinais , Proteínas rho de Ligação ao GTP/metabolismo
15.
J Biol Chem ; 278(31): 28443-54, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12736263

RESUMO

Phagocytosis of complement-opsonized targets is a primary function of neutrophils at sites of inflammation, and the clearance of neutrophils that have phagocytosed microbes is important for the resolution of inflammation. Our previous work suggests that phagocytosis leads to rapid neutrophil apoptosis that is inhibited by antibody to the beta2 integrin, Mac-1, and requires NADPH oxidase-derived reactive oxygen species (ROS) generated during phagocytosis. Here we report that phagocytosis-induced cell death (PICD) does not occur in Mac-1-deficient murine neutrophils, suggesting that PICD proceeds through a bona fide Mac-1-dependent pathway. A sustained, intracellular oxidative burst is associated with PICD. Furthermore, PICD does not require traditional death receptors, Fas, or tumor necrosis factor (TNF) receptor. TNF but not Fas synergizes with phagocytosis to enhance significantly PICD by increasing the oxidative burst, and this is Mac-1-dependent. Phagocytosis-induced ROS promote cleavage/activation of caspases 8 and 3, key players in most extrinsic ("death receptor") mediated pathways of apoptosis, and caspases 8 and 3 but not caspase 9/mitochondria, are required for PICD. This suggests that ROS target the extrinsic versus the intrinsic ("stress stimulus") apoptotic pathway. Phagocytosis also triggers a competing MAPK/ERK-dependent survival pathway that provides resistance to PICD likely by down-regulating caspase 8 activation. The anti-apoptotic factor granulocyte-macrophage colony-stimulating factor (GM-CSF) significantly enhances ROS generation associated with phagocytosis. Despite this, it completely suppresses PICD by sustaining ERK activation and inhibiting caspase 8 activation in phagocytosing neutrophils. Together, these studies suggest that Mac-1-mediated phagocytosis promotes apoptosis through a caspase 8/3-dependent pathway that is modulated by NADPH oxidase-generated ROS and MAPK/ERK. Moreover, TNF and GM-CSF, likely encountered by phagocytosing neutrophils at inflammatory sites, exploit pro-(ROS) and anti-apoptotic (ERK) signals triggered by phagocytosis to promote or suppress PICD, respectively, and thus modulate the fate of phagocytosing neutrophils.


Assuntos
Apoptose , Antígeno de Macrófago 1/fisiologia , Neutrófilos/fisiologia , Fagocitose , Animais , Caspase 3 , Caspase 8 , Caspase 9 , Caspases/metabolismo , Sobrevivência Celular , Proteínas do Sistema Complemento , Ativação Enzimática , Escherichia coli , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Antígeno de Macrófago 1/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NADPH Oxidases/metabolismo , Proteínas Opsonizantes , Espécies Reativas de Oxigênio/metabolismo , Receptores do Fator de Necrose Tumoral/deficiência , Receptores do Fator de Necrose Tumoral/fisiologia , Explosão Respiratória , Fator de Necrose Tumoral alfa/farmacologia , Receptor fas/genética , Receptor fas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA