Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 5(1): 111-124, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33537535

RESUMO

BACKGROUND: Platelets are small anucleate cells that circulate in the blood in a resting state but can be activated by external cues. In case of need, platelets from blood donors can be transfused. As an alternative source, platelets can be produced from induced pluripotent stem cells (iPSCs); however, recovered numbers are low. OBJECTIVES: To optimize megakaryocyte (MK) and platelet output from murine iPSCs, we investigated overexpression of the transcription factors GATA-binding factor 1 (GATA1); nuclear factor, erythroid 2; and pre-B-cell leukemia transcription factor 1 (Pbx1) and a hyperactive variant of the small guanosine triphosphatase RhoA (RhoAhc). METHODS: To avoid off-target effects, we generated iPSCs carrying the reverse tetracycline-responsive transactivator M2 (rtTA-M2) in the Rosa26 locus and expressed the factors from Tet-inducible gammaretroviral vectors. Differentiation of iPSCs was initiated by embryoid body (EB) formation. After EB dissociation, early hematopoietic progenitors were enriched and cocultivated on OP9 feeder cells with thrombopoietin and stem cell factor to induce megakaryocyte (MK) differentiation. RESULTS: Overexpression of GATA1 and Pbx1 increased MK output 2- to 2.5-fold and allowed prolonged collection of MK. Cytologic and ultrastructural analyses identified typical MK with enlarged cells, multilobulated nuclei, granule structures, and an internal membrane system. However, GATA1 and Pbx1 expression did not improve MK maturation or platelet release, although in vitro-generated platelets were functional in spreading on fibrinogen or collagen-related peptide. CONCLUSION: We demonstrate that the use of rtTA-M2 transgenic iPSCs transduced with Tet-inducible retroviral vectors allowed for gene expression at later time points during differentiation. With this strategy we could identify factors that increased in vitro MK production.

2.
Blood ; 133(13): 1465-1478, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30683655

RESUMO

Thrombopoietin (Thpo)/myeloproliferative leukemia virus oncogene (Mpl) signaling controls hematopoietic stem cell (HSC) self-renewal and quiescence; however, how these 2 seemingly opposing functions are controlled is not well understood. By transplantation of lentiviral-transduced hematopoietic cells in the Mpl-deficient mouse model, we addressed whether known or predicted Thpo target genes were able to rescue the Mpl-deficient phenotype of the mice. Among the tested genes, we identified endothelial protein C receptor (Epcr) to expand HSCs with the long-term (LT)-HSC surface phenotype in Mpl-/- mice and to enable secondary transplantation of Mpl-deficient bone marrow (BM). Epcr-transduced Mpl-/- HSCs enter quiescence earlier after transplantation than control-transduced Mpl-/- cells, and upregulated expression of the anti-apoptotic gene Bcl-xL. Also, in the wild-type background, Epcr expression marked the engrafting population in the BM. Furthermore, Epcr expression in Mpl-/- hematopoiesis increased the number of megakaryocytes in the BM. In vitro Thpo supported the surface expression of Epcr on primary murine hematopoietic stem and progenitor cells. With these data, we add new insights into Thpo-dependent influence on HSC engraftment after transplantation. This may be of use for the in vitro manipulation of HSCs, also in the context of gene therapy.


Assuntos
Receptor de Proteína C Endotelial/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/citologia , Receptores de Trombopoetina/genética , Animais , Proliferação de Células , Deleção de Genes , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL
3.
Biomaterials ; 192: 486-499, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30508767

RESUMO

Genetic modification of induced pluripotent stem (iPS) cells may be necessary for the generation of effector cells for cellular therapies. Hereby, it can be important to induce transgene expression at restricted and defined time windows, especially if it interferes with pluripotency or differentiation. To achieve this, inducible expression systems can be used such as the tetracycline-inducible retroviral vector system, however, retroviral expression can be subjected to epigenetic silencing or to position-effect variegation. One strategy to overcome this is the incorporation of ubiquitous chromatin opening elements (UCOE®'s) into retroviral vectors to maintain a transcriptionally permissive chromatin state at the integration site. In this study, we developed Tet-inducible all-in-one gammaretroviral vectors carrying different sized UCOE®'s derived from the A2UCOE. The ability to prevent vector silencing by preserving the Tet-regulatory potential was investigated in different cell lines, and in murine and human iPS cells. A 670-bp fragment spanning the CBX3 promoter region of A2UCOE (U670) was the most potent element in preventing silencing, and conferred the strongest expression from the vector in the induced state. While longer fragments of A2UCOEs also sustained expression, vector titers and induction efficiencies were impaired. Finally, we demonstrate that U670 can be used for constitutive expression of the transactivator in the all-in-one vector for faithful regulation of transgenes by doxycycline, including the thrombopoietin receptor Mpl conferring cytokine-dependent cell growth.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Expressão Gênica , Vetores Genéticos/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Lentivirus/genética , Tetraciclina/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Citocinas/metabolismo , Doxiciclina/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Fosfoglicerato Quinase/metabolismo , Regiões Promotoras Genéticas , Receptores de Trombopoetina/metabolismo , Ativação Transcricional/genética , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA