Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0120339, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786033

RESUMO

The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian tendon and highlight its potential as a model system for investigating poorly understood aspects of the ontogeny and phylogeny of vertebrate collagenous tissues.


Assuntos
Colágeno/metabolismo , Ligamentos/fisiologia , Células Musculares/fisiologia , Paracentrotus/fisiologia , Acetilcolina/farmacologia , Animais , Arecolina/farmacologia , Fenômenos Biomecânicos , Agonistas Colinérgicos/farmacologia , Condroitina ABC Liase/farmacologia , Hialuronoglucosaminidase/farmacologia , Ligamentos/efeitos dos fármacos , Mecanotransdução Celular , Cloreto de Metacolina/farmacologia , Movimento/efeitos dos fármacos , Agonistas Muscarínicos/farmacologia , Células Musculares/efeitos dos fármacos , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Paracentrotus/efeitos dos fármacos , Piperazinas/farmacologia , Estresse Mecânico , Resistência à Tração , Viscosidade
2.
Mar Drugs ; 12(9): 4912-33, 2014 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-25255130

RESUMO

Collagen has become a key-molecule in cell culture studies and in the tissue engineering field. Industrially, the principal sources of collagen are calf skin and bones which, however, could be associated to risks of serious disease transmission. In fact, collagen derived from alternative and riskless sources is required, and marine organisms are among the safest and recently exploited ones. Sea urchins possess a circular area of soft tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore represents a potential unexploited collagen source, easily obtainable as a food industry waste product. Our results demonstrate that it is possible to extract native collagen fibrils from the PM and produce suitable substrates for in vitro system. The obtained matrices appear as a homogeneous fibrillar network (mean fibril diameter 30-400 nm and mesh < 2 µm) and display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity (60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can be a valuable low-cost collagen source for mechanically resistant biomedical devices.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Paracentrotus/química , Animais , Fenômenos Biomecânicos , Bovinos , Contagem de Células , Proliferação de Células , Colágeno/ultraestrutura , Humanos , Indicadores e Reagentes , Teste de Materiais , Mercaptoetanol/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Ratos , Suínos , Resistência à Tração , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA