Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3315-3326, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37284895

RESUMO

The human prostate-specific membrane antigen (PSMA) is substantially up-regulated in metastatic prostate cancer (PCa) cells. PSMA can be targeted by 177Lu conjugated to PSMA-617, a high-affinity ligand for the PSMA. The binding of the radioligand, 177Lu-PSMA-617, results in its internalisation and delivery of ß-radiation into the cancer cells. However, PSMA-617, a component of the final product in the synthesis of the radioligand, may also play a role in the pathophysiology of PCa cells. The present study aimed to clarify the effects of PSMA-617 (10, 50 and 100 nM) on the expression of PSMA in PSMA-positive LNCaP cells, their proliferation, 177Lu-PSMA-617-induced cell death by WST-1 and lactate dehydrogenase assays, immunohistochemistry, western blotting, immunofluorescence staining and uptake of 177Lu-PSMA-617. PSMA-617 at 100 nM concentration induced cell-growth arrest, down-regulated cyclin D1 and cyclin E1 (by 43 and 36%, respectively) and up-regulated the cyclin-dependent kinase inhibitor p21Waf1/Cip1 (by 48%). Immunofluorescence staining demonstrated reduced content of DNA, pointing to a lower rate of cell division. PSMA-617 (up to 100 nM) did not alter the uptake of 177Lu-PSMA-617 into the LNCaP cells. Interestingly, simultaneous treatment with 177Lu-PSMA-617 and PSMA-617 for 24 and 48 h substantially potentiated the cell-death promoting effects of the radioligand. In conclusion, the combination of impeding tumour cell proliferation by PSMA-617 and its potentiation of the radiation-induced cell death brought about by 177Lu-PSMA-617 in PCa cells may considerably improve the outcome of the radiation therapy with 177Lu-PSMA-617, especially in patients with decreased radiosensitivity of PCa cells to the radioligand.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Humanos , Masculino , Dipeptídeos/farmacologia , Compostos Heterocíclicos com 1 Anel/farmacologia , Compostos Heterocíclicos com 1 Anel/química , Antígeno Prostático Específico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/radioterapia
2.
J Mol Med (Berl) ; 99(8): 1073-1083, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33864097

RESUMO

The present study elucidates the neuroprotective mechanisms of the PPARγ (peroxisome proliferator-activated receptor γ) agonist pioglitazone in survival of ischemic neurons following middle cerebral artery occlusion with reperfusion (MCAO). Intracerebroventricular infusion of pioglitazone over 5 days before and 24 or 48 h after MCAO alleviated neurological impairments, inhibited apoptosis 24 h, and activated the PI3K/Akt pathway along with increased phosphorylation of Akt (ser473) and GSK-3ß (ser9) in the peri-infarct cortical areas 48 h after MCAO. In primary cortical neurons, pioglitazone suppressed the glutamate-induced release of lactate dehydrogenase by a PPARγ-dependent mechanism. This protective effect was reversed after co-treatment with PI3K and Akt inhibitors, LY294002 and SH-6, respectively. Pioglitazone enhanced the expression of the antioxidative transcription factor Nrf2 and its target gene protein, heme oxidase-1, in the peri-infarct area. Pioglitazone also increased activation of the antioxidant response element (ARE) in neuronal PC12 cells transfected with the pNQO1-rARE plasmid. We demonstrate in primary cortical neurons from Nrf2 knockout mice that the lack of Nrf2 completely abolished the neuroprotective effects of pioglitazone against oxidative and excitotoxic damage. Our results strongly suggest that the neuroprotective effects of PPARγ in peri-infarct brain tissues comprise the concomitant activation of the PI3K/Akt and Nrf2/ARE pathways. KEY MESSAGES: Pioglitazone inhibits apoptosis in ischemic brain tissue.  Pioglitazone acting on PPARγ activates PI3K/Akt pathway in ischemic brain tissue. Pioglitazone activates via Nrf2 the antioxidant defense pathway in injured neurons. Pioglitazone activates the antioxidant response element in neuronal PC12 cells. Pioglitazone fails to protect primary neurons lacking Nrf2 against oxidative damage. Activation of PPARγ supports the survival of viable neurons in peri-infarct regions.


Assuntos
Antioxidantes/farmacologia , Isquemia Encefálica/metabolismo , Fármacos Neuroprotetores/farmacologia , Pioglitazona/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Biomarcadores , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Circulação Cerebrovascular/efeitos dos fármacos , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção/efeitos dos fármacos , Células PC12 , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
3.
Naunyn Schmiedebergs Arch Pharmacol ; 390(1): 37-48, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27664035

RESUMO

The peroxisome proliferator-activated receptor γ (PPARγ) agonists, thiazolidinediones, including pioglitazone (PIO) exhibit anti-tumour activities in cancer cells. The present study investigates the effects of PIO on cell proliferation and apoptosis in SK-UT-1 cells, a human uterine leiomyosarcoma cell line, and human uterine smooth muscle cells (HUtSMC). The proliferation and viability of SK-UT-1 cells treated with vehicle or PIO were assessed by cell counting and WST-1 assay. The activity of MEK/ERK and p38 MAPK signalling pathways and the expression of p53, the cyclin-dependent kinase inhibitor, p21, Bax, Bad and Bim proteins and cleaved caspase-3 were analysed by Western blotting. Quiescent SK-UT-1 cells intensively proliferate and display high levels of phosphorylated, activated MEK1/2, ERK1/2 and p38 MAPK. PIO (10 or 25 µM) induced time- and dose-dependently cell-growth arrest, reduced the cell numbers and effectively suppressed the over-activated MEK/ERK and p38 MAPK signalling pathways as evidenced by the abolished levels of phosphorylated MEK1/2, ERK1/2 and p38 MAPK. PIO activated the intrinsic apoptotic pathway, i.e. up-regulated the p53, p21, Bax and Bad proteins and cleaved caspase-3. PIO also reduced cell numbers of highly proliferative SK-UT-1 cells cultured in growth medium. The anti-proliferative and pro-apoptotic actions of PIO were not PPARγ dependent and exclusive for SK-UT-1 cells as PIO did not interfere with the proliferation of HUtSMC. The pronounced anti-tumorigenic effects of PIO in SK-UT-1 cells address an important issue about the relevance of the PPARγ agonist in the treatment of the human uterine leiomyosarcoma.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Leiomiossarcoma/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Neoplasias Uterinas/tratamento farmacológico , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ativação Enzimática , Feminino , Humanos , Leiomiossarcoma/metabolismo , Leiomiossarcoma/patologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PPAR gama/metabolismo , Fosforilação , Pioglitazona , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia
4.
Naunyn Schmiedebergs Arch Pharmacol ; 388(9): 939-51, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25953200

RESUMO

Omapatrilat (OMA), which simultaneously inhibits the angiotensin-converting enzyme (ACE) and the neutral endopeptidase (neprilysin (NEP)), is widely used in experimental protocols related to hypertension and heart failure. The penetration of OMA across the blood-brain barrier (BBB) and the effects of ACE/NEP inhibition on the recovery from ischaemic stroke have not yet been investigated. Angiotensin (Ang) I injected intracerebroventricularly (ICV) or intravenously (IV) is converted to Ang II by ACE and induces an immediate increase in blood pressure. The pressor responses to OMA administered ICV, orally or IV were studied in male Wistar rats instrumented with an ICV and arterial and venous catheters. OMA infused ICV rapidly appeared in the systemic circulation and more effectively attenuated the systemic than the central pressor responses to Ang I. OMA administered orally (5, 25, 100 µmol/kg body weight) or IV (0.5, 1, 5, 25 µmol/kg body weight) completely abolished increases in blood pressure to IV Ang I up to 2 h after treatment. The pressor responses to ICV Ang I were not altered, indicating that systemically administered OMA does not cross the BBB. To study the effects of ACE and NEP inhibition in the brain on the recovery from ischaemic stroke, OMA was infused ICV over a 5-day period before and 24 h after the occlusion of the middle cerebral artery (MCAO) for 90 min. ICV application of OMA had no effect on infarction volume and marginally improved neurological outcome. We demonstrate for the first time that simultaneous inhibition of ACE and NEP in the brain tissue does not alter the recovery from ischaemic stroke.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Isquemia Encefálica/metabolismo , Piridinas/administração & dosagem , Acidente Vascular Cerebral/metabolismo , Tiazepinas/administração & dosagem , Administração Intravenosa , Administração Oral , Inibidores da Enzima Conversora de Angiotensina/farmacocinética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Infusões Intraventriculares , Masculino , Neprilisina/antagonistas & inibidores , Peptidil Dipeptidase A/metabolismo , Piridinas/farmacocinética , Piridinas/farmacologia , Ratos , Ratos Wistar , Tiazepinas/farmacocinética , Tiazepinas/farmacologia
5.
Clin Sci (Lond) ; 128(9): 567-78, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25487516

RESUMO

The presence of angiotensin type 2 (AT2) receptors in mitochondria and their role in NO generation and cell aging were recently demonstrated in various human and mouse non-tumour cells. We investigated the intracellular distribution of AT2 receptors including their presence in mitochondria and their role in the induction of apoptosis and cell death in cultured human uterine leiomyosarcoma (SK-UT-1) cells and control human uterine smooth muscle cells (HutSMC). The intracellular levels of the AT2 receptor are low in proliferating SK-UT-1 cells but the receptor is substantially up-regulated in quiescent SK-UT-1 cells with high densities in mitochondria. Activation of the cell membrane AT2 receptors by a concomitant treatment with angiotensin II and the AT1 receptor antagonist, losartan, induces apoptosis but does not affect the rate of cell death. We demonstrate for the first time that the high-affinity, non-peptide AT2 receptor agonist, Compound 21 (C21), penetrates the cell membrane of quiescent SK-UT-1 cells, activates intracellular AT2 receptors and induces rapid cell death; approximately 70% of cells died within 24 h. The cells, which escaped cell death, displayed activation of the mitochondrial apoptotic pathway, i.e. down-regulation of the Bcl-2 protein, induction of the Bax protein and activation of caspase-3. All quiescent SK-UT-1 cells died within 5 days after treatment with a single dose of C21. C21 was devoid of cytotoxic effects in proliferating SK-UT-1 cells and in quiescent HutSMC. Our results point to a new, unique approach enabling the elimination non-cycling uterine leiomyosarcoma cells providing that they over-express the AT2 receptor.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Leiomiossarcoma/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Neoplasias Uterinas/metabolismo , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Proteínas Reguladoras de Apoptose/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/patologia , Proliferação de Células , Feminino , Humanos , Leiomiossarcoma/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Permeabilidade , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Neoplasias Uterinas/patologia
6.
Int J Pharm ; 477(1-2): 167-75, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25455769

RESUMO

UNLABELLED: Pentamidine is an effective antiparasitic agent and approved drug for the treatment of African trypanosomiasis (sleeping sickness). However, pentamidine suffers from poor orally bioavailability and lacks central nervous system (CNS) delivery. Therefore its applicability is limited to intravenous or intramuscular treatment of the first stage of the African trypanosomiasis. For this reason, several new pentamidine pro-drugs have been developed with the aim of providing improved orally availability and CNS penetration. AIM: this work aims to measure and to compare the distribution, bioavailability, and ability to cross the blood-brain barrier of [(123)I]-labeled pentamidine and its pro-drugs, N,N'-dihydroxypentamidine and N,N'­bis(succinyloxy) pentamidine, using SPECT (single photon emission computed tomography) after intravenously and per orally administration in rats. METHODS: a total of 60 male Sprague Dawley rats were examined. Each [(123)I]-labeled substance (n=3) was applied to 12 rats (n=6 i.v. and n=6 orally). In two additional test series both [(123)I]iodopentamidine (n=6) and N,N'-bis(succinyloxy)-[(123)I]iodopentamidine (n=6) were administered orally together with the non-radioactive homologues. To evaluate the in vivo stability of the labeled compounds, [(123)I]NaI solution was administered intravenously (n=6) and orally (n=6). In vivo SPECT images were acquired after 30 min, 4h, and 24h and blood samples were taken over 24h. The SPECT images were fusioned with previously acquired magnetic resonance images. After the last SPECT the rats were perfused, sacrificed and the organ γ-radiation levels were determined with a γ-counter. Analysis and quantification of the reconstructed SPECT images was performed using the region of interest technique. RESULTS AND CONCLUSION: the data showed a highly improved oral bioavailability of the [(123)I]-labeled pro-drugs compared to [(123)I]-labeled pentamidine. While [(123)I]iodopentamidine was mainly renally eliminated the pro-drugs were primarily metabolized in the liver and underwent biliary elimination. Considering pentamidine's nephrotoxicity this feature has to be seen as an advantage of the pro-drug principle. Moreover, a significantly higher concentration in the brain was detected after intravenous injection of N,N'-dihydroxy[(123)I]iodopentamidine compared to [(123)I]iodopentamidine. The feasibility of an effective treatment of second stage African trypanosomiasis, in which the parasites already infected the brain, with the herein investigated pro-drugs remains to be clarified with infected animals in additional in vivo studies.


Assuntos
Barreira Hematoencefálica/metabolismo , Pentamidina/análogos & derivados , Succinatos/farmacocinética , Tripanossomicidas/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Humanos , Masculino , Pentamidina/farmacocinética , Pró-Fármacos , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Distribuição Tecidual , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Tripanossomíase Africana/tratamento farmacológico
7.
Exp Neurol ; 238(2): 243-53, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22995601

RESUMO

Thiazolidinediones (TZDs), pioglitazone, rosiglitazone and troglitazone, the synthetic agonists for the PPARγ, administered prior or during ischemic insult improve stroke outcome in rodents, post-occlusion treatments yielded inconsistent results. In the present experiments carried out according to the Stroke Therapy Academic Industry Roundtable (STAIR) guidelines, we studied the effects of post-ischemic pioglitazone treatment on the outcome of focal cerebral ischemia, inflammatory and apoptotic processes, neuronal degeneration and regeneration, blood pressure, heart rate and physiological variables in blood. Male Wistar rats were subjected to a 90 min middle cerebral artery occlusion (MCAO). Subcutaneous (SC) treatment with vehicle or pioglitazone was initiated 90 min after MCAO, i.e. in the post-ischemic, reperfusion phase and continued on 2 (2 day-experiment, protocol 1) or 5 (5-day experiment, protocol 2) consecutive days. In the 2-day experiment, pioglitazone at a dose of 2.5 mg/kg body weight (bw) reduced infarct volume by 31% and oedema by 43% on day 2 after MCAO and attenuated the infiltration of ischemic cortical tissue with activated microglia and macrophages. The slight reduction in infarct volume by approximately 18%, detected in rats treated with 10 mg/kg bw pioglitazone did not reach statistical significance. The neurological scores of sham-operated rats treated with vehicle or 10 mg/kg bw pioglitazone were not significantly different. In rats subjected to cerebral ischemia, post-ischemic treatment with either dose of pioglitazone alleviated particular motor deficits and sensory impairments on day 2 after MCAO. A single injection of 10 mg/kg bw pioglitazone in the reperfusion phase (90 min after the onset of reperfusion) did not modify systolic and diastolic blood pressure, heart rate and physiological variables compared to vehicle-treated rats at any time point after MCAO. In the 5-day experiment, continuous post-occlusion treatment with 2.5 mg/kg body weight pioglitazone significantly reduced cerebral infarction by 29% and improved the partial paralysis of the forelimb and alleviated sensory deficits. In the peri-infarct cortex, pioglitazone effectively suppressed the accumulation of activated microglia/macrophages, inhibited neuronal degeneration and promoted neuroregeneration and formation of neuronal networks. The current results provide evidence that pioglitazone treatment in the post-ischemic, reperfusion phase improves the recovery from ischemic stroke. Neuroprotective effects of pioglitazone are mediated by inhibition of post-ischemic inflammation and neuronal degeneration, protection of neurones against ischemic injury and by promoting of neuronal regeneration. Our data together with previous findings favour the view that pioglitazone is a promising candidate for clinical stroke trials.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Traumatismo por Reperfusão , Tiazolidinedionas/uso terapêutico , Análise de Variância , Animais , Infarto Encefálico/etiologia , Infarto Encefálico/prevenção & controle , Isquemia Encefálica/complicações , Isquemia Encefálica/mortalidade , Isquemia Encefálica/patologia , Caspase 9/metabolismo , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ectodisplasinas/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/prevenção & controle , Pioglitazona , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Wistar , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fatores de Tempo , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Cell Neurosci ; 49(3): 300-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22206897

RESUMO

Kainic acid (KA) induced seizures provokes an extensive neuronal degeneration initiated by c-Jun N-terminal kinases (JNK) as central mediators of excitotoxicity. However, the actions of their individual isoforms in cellular organelles including mitochondria remain to be elucidated. Here, we have studied the activation of JNK1, JNK2 and JNK3 and their activators, mitogen-activated protein kinase kinase (MKK) 4/7, in brain mitochondria, cytosolic and nuclear fractions after KA seizures. In the mitochondrial fraction, KA significantly increased the presence of JNK1, JNK3 and MKK4 and stimulated their phosphorylation i.e. activation. The pro-apoptotic proteins, Bim and Bax were induced and, consequently, the ratio Bcl-2-Bax decreased. These changes were paralleled by the release of cytochrome c and cleavage of poly(ADP-ribose)-polymerase (PARP). The JNK peptide inhibitor, D-JNKI-1 (XG-102) reversed these pathological events in the mitochondria and almost completely abolished cytochrome c release and PARP cleavage. Importantly, JNK3, but not JNK1 or JNK2, was associated with Bim in mitochondria and D-JNKI-1 prevented the formation of this apoptotic complex. Apart from of the attenuation of c-Jun phosphorylation in the nucleus, D-JNKI-1 did not affect the level of JNK3 isoform in the nuclear and cytosolic fractions. These findings provide novel insights into the mode of action of individual JNK isoforms in cell organelles and points to the JNK3 pool in mitochondria as a target of the JNK inhibitor D-JNKI-1 to confer neuroprotection.


Assuntos
Encéfalo/metabolismo , Citocromos c/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Mitocôndrias/metabolismo , Peptídeos/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Apoptose/fisiologia , Citocromos c/efeitos dos fármacos , Modelos Animais de Doenças , Hipocampo/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Mitocôndrias/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo
9.
PLoS One ; 5(11): e15052, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21124781

RESUMO

OBJECTIVE: Pre-treatment with angiotensin receptor blockers is known to improve neurological outcome after stroke. This study investigated for the first time, whether the renin inhibitor aliskiren has similar neuroprotective effects. METHODS: Since aliskiren specifically blocks human renin, double transgenic rats expressing human renin and angiotensinogen genes were used. To achieve a systolic blood pressure of 150 or 130 mmHg animals were treated with aliskiren (7.5 or 12.5 mg/kg*d) or candesartan (1.5 or 10 mg/kg*d) via osmotic minipump starting five days before middle cerebral artery occlusion with reperfusion. Infarct size was determined by magnetic resonance imaging. mRNA of inflammatory marker genes was studied in different brain regions. RESULTS: The mortality of 33.3% (7 of 21 animals) in the vehicle group was reduced to below 10% by treatment with candesartan or aliskiren (p<0.05). Aliskiren-treated animals had a better neurological outcome 7 days post-ischemia, compared to candesartan (Garcia scale: 9.9±0.7 vs. 7.3±0.7; p<0.05). The reduction of infarct size in the aliskiren group did not reach statistical significance compared to candesartan and vehicle (24 h post-ischemia: 314±81 vs. 377±70 and 403±70 mm(3) respectively). Only aliskiren was able to significantly reduce stroke-induced gene expression of CXC chemokine ligand 1, interleukin-6 and tumor necrosis factor-alpha in the ischemic core. CONCLUSIONS: Head-to-head comparison suggests that treatment with aliskiren before and during cerebral ischemia is at least as effective as candesartan in double transgenic rats. The improved neurological outcome in the aliskiren group was blood pressure independent. Whether this effect is due to primary anti-inflammatory mechanisms has to be investigated further.


Assuntos
Amidas/farmacologia , Angiotensinogênio/fisiologia , Fumaratos/farmacologia , Renina/fisiologia , Acidente Vascular Cerebral/tratamento farmacológico , Angiotensinogênio/antagonistas & inibidores , Angiotensinogênio/genética , Animais , Animais Geneticamente Modificados , Anti-Hipertensivos/farmacologia , Benzimidazóis/farmacologia , Compostos de Bifenilo , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/fisiopatologia , Doenças Arteriais Cerebrais/fisiopatologia , Transtornos Cerebrovasculares/fisiopatologia , Quimiocina CXCL1/genética , Expressão Gênica/efeitos dos fármacos , Humanos , Interleucina-6/genética , Ratos , Renina/antagonistas & inibidores , Renina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/fisiopatologia , Tetrazóis/farmacologia , Fator de Necrose Tumoral alfa/genética
10.
Eur J Neurosci ; 28(9): 1786-94, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18973594

RESUMO

Interleukin-6 (IL-6) exerts neuroprotective effects after cerebral ischaemia but can also exacerbate inflammation and induce neuronal death. The current study investigates the role of cerebral peroxisome proliferator-activated receptor(s) gamma (PPARgamma) in the regulation of IL-6 expression in the peri-infarct cortical tissue in rats exposed to focal cerebral ischaemia. Pioglitazone, a high-affinity PPARgamma ligand, was infused intracerebroventricularly (i.c.v.) via osmotic minipumps over a 5-day period before, during and 24 h or 48 h after middle cerebral artery occlusion (MCAO) for 90 min followed by reperfusion. The expression of PPARgamma and IL-6 in cortical tissue adjacent to the ischaemic core was studied 24 h and 48 h after MCAO. Pioglitazone augmented the ischaemia-induced upregulation of PPARgamma at both time points. Cerebral ischaemia substantially increased IL-6 expression in the peri-infarct cortical tissue. Twenty-four hours after MCAO, the majority of microglial cells/macrophages showed an intense IL-6 immunoreactivity. IL-6 was also localized in neurons, but the distribution of neurons positively stained for IL-6 at the border of the infarct was very heterogeneous. Pioglitazone effectively decreased the number of IL-6-immunoreactive cells and IL-6 protein levels at 24 h but not at 48 h after MCAO. Pioglitazone treatment reduced the infarct size and improved neurological functions. The present study demonstrates that cerebral PPARgamma suppresses the expression of IL-6 in ischaemic brain tissue during the initial phase of ischaemic stroke, in which the overproduction of IL-6 may aggravate neuronal damage, but not at later time points, when IL-6 promotes neuroprotection and inhibits neuronal death.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Infarto Cerebral/tratamento farmacológico , Encefalite/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , PPAR gama/agonistas , Tiazolidinedionas/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Isquemia Encefálica/imunologia , Isquemia Encefálica/fisiopatologia , Infarto Cerebral/imunologia , Infarto Cerebral/fisiopatologia , Modelos Animais de Doenças , Encefalite/imunologia , Encefalite/fisiopatologia , Hipoglicemiantes/farmacologia , Infarto da Artéria Cerebral Média/imunologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/fisiopatologia , Interleucina-6/imunologia , Masculino , Degeneração Neural/imunologia , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , PPAR gama/imunologia , PPAR gama/metabolismo , Pioglitazona , Ratos , Ratos Wistar , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
11.
FASEB J ; 20(8): 1162-75, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16770015

RESUMO

Up-regulation of cyclooxygenase (COX)-2 exacerbates neuronal injury after cerebral ischemia and contributes to neuronal cell death. The present study clarifies the function of cerebral peroxisome-proliferator-activated receptor(s) gamma (PPARgamma) in the expression of COX-2 in neurons of the rat brain after middle cerebral artery occlusion (MCAO) with reperfusion by immunohistochemistry, Western blot, and immunofluorescence staining. In peri-infarct cortical areas the PPARgamma was located in both microglia and neurons, whereas COX-2 was almost exclusively expressed in neurons. PPARgamma immunolabeling reached the peak 12 h after MCAO, whereas the number of COX-2 immunostained cells gradually rose and reached its peak at 48 h. Intracerebroventricular infusion of pioglitazone, an agonist of the PPARgamma, over a 5-day period before and 2 days after MCAO, reduced the infarct size, the expression of tumor necrosis factor alpha (TNF-alpha), COX-2, and the number of cells positively stained for COX-1 and COX-2 in the peri-infarct cortical regions. COX-2 induction was also attenuated in the ipsilateral but not in the contralateral hippocampus. In primary cortical neurons expressing the PPARgamma, pioglitazone suppressed COX-2 expression in response to oxidative stress. This protective effect was reversed after cotreatment with GW 9662, a selective antagonist of the PPARgamma, clearly demonstrating a PPARgamma-dependent mechanism. Our data provide evidence that activation of neuronal PPARgamma considerably contributes to neuroprotection by prevention of COX-2 up-regulation in vitro and in peri-infarct brain areas.


Assuntos
Isquemia Encefálica/metabolismo , Ciclo-Oxigenase 2/metabolismo , Neurônios/metabolismo , PPAR gama/metabolismo , Animais , Isquemia Encefálica/enzimologia , Sobrevivência Celular , Córtex Cerebral/química , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Circulação Cerebrovascular/efeitos dos fármacos , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/análise , Masculino , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , PPAR gama/agonistas , PPAR gama/análise , Pioglitazona , Ratos , Ratos Wistar , Tiazolidinedionas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
12.
J Neurochem ; 94(5): 1395-401, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15992368

RESUMO

The angiotensin type 2 (AT2) receptor has been previously demonstrated to exert neuroprotective actions possibly by inducing neuronal cell differentiation involving neurite outgrowth. The nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARgamma) is an important transcriptional regulator of cell differentiation. The aim of the present study was to clarify whether PPARgamma is involved in AT2-receptor-mediated morphological neuronal cell differentiation. To investigate AT2-receptor-mediated morphological neuronal cell differentiation, rat pheochromocytoma cells (PC12W cells) expressing AT2 but not AT1 receptors, were stimulated with angiotensin II (Ang II, 100 nmol/L) +/- the PPARgamma antagonists GW9662 (3 micromol/L) and bisphenol A diglycidyl ether (BADGE, 1 micromol/L), and neurite outgrowth of these cells was assessed. Ang II induced neurite outgrowth by 19 +/- 1.6-fold (p < 0.01). Antagonizing PPARgamma activity by GW9662 or BADGE potently blocked Ang II-induced neurite outgrowth (Ang II + GW9662: 6.6 +/- 1.5-fold, p < 0.05; Ang II + BADGE: 1.3 +/- 0.7-fold, p < 0.01). AT2 receptor activation by Ang II markedly induced mRNA and protein expression of the PPARgamma2 isoform and enhanced ligand-induced PPARgamma activity in transactivation assays. In conclusion, the present study demonstrates that Ang II induces PPARgamma expression and ligand-mediated PPARgamma activity via AT2 receptor activation, which appears to be a crucial process in AT2 receptor mediated neurite outgrowth. AT2 receptor/PPARgamma-dependent neurite outgrowth may play an important role during neuroprotective processes.


Assuntos
Angiotensina II/farmacologia , PPAR gama/biossíntese , Receptor Tipo 2 de Angiotensina/fisiologia , Animais , Anexina A2/metabolismo , Humanos , Ligantes , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Células PC12 , PPAR gama/fisiologia , Ratos
13.
Am J Physiol Regul Integr Comp Physiol ; 289(3): R845-50, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15879055

RESUMO

In addition to rapid responses comprising increases in blood pressure, drinking, and stimulation of natriuresis, ANG II induces the expression of transcription factors (TF) in the central nervous system. The ANG II metabolite ANG III (ANG 2-8) has been demonstrated to exert physiological effects similar to those of ANG II. We aimed to determine 1) whether ANG III induces TF expression in the brain, 2) which ANG II (AT) receptor subtype is involved, and 3) whether the two peptides, ANG II and ANG III, differ in their efficacy to stimulate TF expression. ANG II (100 pmol), ANG III (100 pmol), or vehicle was injected into the lateral brain ventricle of conscious rats alone or in combination with the AT(1) receptor antagonist losartan (10 nmol), the AT(2) receptor antagonist PD-123319 (5 nmol), or the aminopeptidase inhibitor amastatin (10 nmol). Similar to ANG II, ANG III induced the expression of c-Fos, c-Jun, and Krox-24 in four brain regions, subfornical organ, median preoptic area, paraventricular nucleus, and supraoptic nucleus of the hypothalamus, with the same efficacy. This effect was AT(1) receptor mediated. Pretreatment with amastatin reduced the expression of TF in response to ANG II, indicating that this expression is partly mediated by ANG III. Interestingly, the AT(2) receptor antagonist PD-123319 alone slightly enhanced the expression of c-Fos, c-Jun, and Krox-24 in different populations of neurons of the paraventricular nucleus. These data indicate that different populations of neurons in the paraventricular nucleus are tonically inhibited by AT(2) receptors under physiological conditions.


Assuntos
Angiotensina III/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Angiotensina II/administração & dosagem , Angiotensina II/farmacologia , Angiotensina III/administração & dosagem , Animais , Proteína 1 de Resposta de Crescimento Precoce , Imuno-Histoquímica , Injeções Intraventriculares , Masculino , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Ratos Wistar , Distribuição Tecidual
14.
J Neurochem ; 85(3): 759-67, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12694402

RESUMO

We investigated the effect of angiotensin II on intracellular cyclic GMP content and neurite outgrowth as an indicator of cell differentiation in PC12 W cells. Neurite outgrowth was examined by phase-contrast microscopy. Outgrown neurites were classified as small, medium and large, and were expressed as neurites per 100 cells. Angiotensin II (10-7 m) increased the outgrowth of medium and large neurites by mean +/- SEM 20.2 +/- 2.3 and 6.6 +/- 1.4 compared with 1.66 +/- 0.5 and 0.1 +/- 0.06 neurites per 100 cells in control. Cellular cyclic GMP content increased by 50-250% with angiotensin II at concentrations of 10-6-10-4 m. Both blockade of AT2 receptors and of nitric oxide synthase markedly reduced angiotensin II-induced neurite outgrowth and cyclic GMP production. In contrast, B2 receptor blockade had no effect or even increased these angiotensin II effects. Sodium nitroprusside and 8-bromo-cyclic GMP both mimicked the effects of angiotensin II on cell differentiation. The protein kinase G inhibitor KT-5823 inhibited the neurite outgrowth induced by both angiotensin II and 8-bromo-cyclic GMP. Our results demonstrate that angiotensin II can stimulate cell differentiation in PC12 W cells by nitric oxide-related and cyclic GMP-dependent mechanisms. The effects of angiotensin II on cell differentiation and cyclic GMP production were mediated via the AT2 receptor and further enhanced by bradykinin B2 receptor blockade.


Assuntos
Bradicinina/metabolismo , Carbazóis , Diferenciação Celular/fisiologia , GMP Cíclico/análogos & derivados , Indóis , Óxido Nítrico/metabolismo , Receptores de Angiotensina/metabolismo , Alcaloides/farmacologia , Angiotensina II/farmacologia , Antagonistas de Receptores de Angiotensina , Animais , Bradicinina/farmacologia , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , GMP Cíclico/metabolismo , GMP Cíclico/farmacologia , Proteínas Quinases Dependentes de GMP Cíclico/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Neuritos/classificação , Neuritos/efeitos dos fármacos , Neuritos/fisiologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Células PC12 , Ratos , Receptor Tipo 1 de Angiotensina , Receptor Tipo 2 de Angiotensina , Receptores de Angiotensina/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA