Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226092

RESUMO

Several metabolites have been shown to have independent and at times unexpected biological effects outside of their metabolic pathways. These include succinate, lactate, fumarate, and 2-hydroxyglutarate. 2-Hydroxybutyrate (2HB) is a byproduct of endogenous cysteine synthesis, produced during periods of cellular stress. 2HB rises acutely after exercise; it also rises during infection and is also chronically increased in a number of metabolic disorders. We show here that 2HB inhibits branched-chain aminotransferase enzymes, which in turn triggers a SIRT4-dependent shift in the compartmental abundance of protein ADP-ribosylation. The 2HB-induced decrease in nuclear protein ADP-ribosylation leads to a C/EBPß-mediated transcriptional response in the branched-chain amino acid degradation pathway. This response to 2HB exposure leads to an improved oxidative capacity in vitro. We found that repeated injection with 2HB can replicate the improvement to oxidative capacity that occurs following exercise training. Together, we show that 2-HB regulates fundamental aspects of skeletal muscle metabolism.


Assuntos
Fadiga Muscular , Animais , Camundongos , Músculo Esquelético/metabolismo , Retroalimentação Fisiológica , ADP-Ribosilação , Transaminases/metabolismo , Transaminases/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/genética , Sirtuínas/metabolismo , Sirtuínas/genética , Hidroxibutiratos/metabolismo
2.
Front Immunol ; 15: 1293723, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690263

RESUMO

T cells must adapt to variations in tissue microenvironments; these adaptations include the degree of oxygen availability. The hypoxia-inducible factor (HIF) transcription factors control much of this adaptation, and thus regulate many aspects of T cell activation and function. The HIFs are in turn regulated by oxygen-dependent hydroxylases: both the prolyl hydroxylases (PHDs) which interact with the VHL tumour suppressor and control HIF turnover, and the asparaginyl hydroxylase known as the Factor inhibiting HIF (FIH), which modulates HIF transcriptional activity. To determine the role of this latter factor in T cell function, we generated T cell-specific FIH knockout mice. We found that FIH regulates T cell fate and function in a HIF-dependent manner and show that the effects of FIH activity occur predominantly at physiological oxygen concentrations. T cell-specific loss of FIH boosts T cell cytotoxicity, augments T cell expansion in vivo, and improves anti-tumour immunotherapy in mice. Specifically inhibiting FIH in T cells may therefore represent a promising strategy for cancer immunotherapy.


Assuntos
Diferenciação Celular , Camundongos Knockout , Animais , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ativação Linfocitária/imunologia , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Camundongos Endogâmicos C57BL
3.
Cell Rep ; 42(9): 113013, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37632752

RESUMO

2-Hydroxyglutarate (2HG) is a byproduct of the tricarboxylic acid (TCA) cycle and is readily detected in the tissues of healthy individuals. 2HG is found in two enantiomeric forms: S-2HG and R-2HG. Here, we investigate the differential roles of these two enantiomers in cluster of differentiation (CD)8+ T cell biology, where we find they have highly divergent effects on proliferation, differentiation, and T cell function. We show here an analysis of structural determinants that likely underlie these differential effects on specific α-ketoglutarate (αKG)-dependent enzymes. Treatment of CD8+ T cells with exogenous S-2HG, but not R-2HG, increased CD8+ T cell fitness in vivo and enhanced anti-tumor activity. These data show that S-2HG and R-2HG should be considered as two distinct and important actors in the regulation of T cell function.


Assuntos
Neoplasias , Linfócitos T Citotóxicos , Humanos , Linfócitos T Citotóxicos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Glutaratos/metabolismo , Neoplasias/metabolismo , Isocitrato Desidrogenase
4.
Nat Metab ; 5(10): 1747-1764, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37605057

RESUMO

T cell function and fate can be influenced by several metabolites: in some cases, acting through enzymatic inhibition of α-ketoglutarate-dependent dioxygenases, in others, through post-translational modification of lysines in important targets. We show here that glutarate, a product of amino acid catabolism, has the capacity to do both, and has potent effects on T cell function and differentiation. We found that glutarate exerts those effects both through α-ketoglutarate-dependent dioxygenase inhibition, and through direct regulation of T cell metabolism via glutarylation of the pyruvate dehydrogenase E2 subunit. Administration of diethyl glutarate, a cell-permeable form of glutarate, alters CD8+ T cell differentiation and increases cytotoxicity against target cells. In vivo administration of the compound is correlated with increased levels of both peripheral and intratumoural cytotoxic CD8+ T cells. These results demonstrate that glutarate is an important regulator of T cell metabolism and differentiation with a potential role in the improvement of T cell immunotherapy.


Assuntos
Fenômenos Bioquímicos , Linfócitos T CD8-Positivos , Linfócitos T CD8-Positivos/metabolismo , Glutaratos/metabolismo
5.
Elife ; 122023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166103

RESUMO

Oxygenation levels are a determinative factor in T cell function. Here, we describe how oxygen tensions sensed by mouse and human T cells at the moment of activation act to persistently modulate both differentiation and function. We found that in a protocol of CAR-T cell generation, 24 hr of low oxygen levels during initial CD8+ T cell priming is sufficient to enhance antitumour cytotoxicity in a preclinical model. This is the case even when CAR-T cells are subsequently cultured under high oxygen tensions prior to adoptive transfer. Increased hypoxia-inducible transcription factor (HIF) expression was able to alter T cell fate in a similar manner to exposure to low oxygen tensions; however, only a controlled or temporary increase in HIF signalling was able to consistently improve cytotoxic function of T cells. These data show that oxygenation levels during and immediately after T cell activation play an essential role in regulating T cell function.


Assuntos
Linfócitos T CD8-Positivos , Oxigênio , Camundongos , Humanos , Animais , Oxigênio/metabolismo , Transdução de Sinais , Ativação Linfocitária , Transferência Adotiva
6.
Cancer Immunol Res ; 11(3): 351-363, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36574610

RESUMO

Nitric oxide (NO) is a signaling molecule produced by NO synthases (NOS1-3) to control processes such as neurotransmission, vascular permeability, and immune function. Although myeloid cell-derived NO has been shown to suppress T-cell responses, the role of NO synthesis in T cells themselves is not well understood. Here, we showed that significant amounts of NO were synthesized in human and murine CD8+ T cells following activation. Tumor growth was significantly accelerated in a T cell-specific, Nos2-null mouse model. Genetic deletion of Nos2 expression in murine T cells altered effector differentiation, reduced tumor infiltration, and inhibited recall responses and adoptive cell transfer function. These data show that endogenous NO production plays a critical role in T cell-mediated tumor immunity.


Assuntos
Neoplasias , Óxido Nítrico , Animais , Camundongos , Humanos , Óxido Nítrico Sintase Tipo II/genética , Camundongos Knockout , Neoplasias/genética , Linfócitos T CD8-Positivos
7.
Front Immunol ; 13: 837669, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251031

RESUMO

Targeting T cell metabolism is an established method of immunomodulation. Following activation, T cells engage distinct metabolic programs leading to the uptake and processing of nutrients that determine cell proliferation and differentiation. Redirection of T cell fate by modulation of these metabolic programs has been shown to boost or suppress immune responses in vitro and in vivo. Using publicly available T cell transcriptomic and proteomic datasets we identified vitamin B6-dependent transaminases as key metabolic enzymes driving T cell activation and differentiation. Inhibition of vitamin B6 metabolism using the pyridoxal 5'-phosphate (PLP) inhibitor, aminoxyacetic acid (AOA), suppresses CD8+ T cell proliferation and effector differentiation in a dose-dependent manner. We show that pyridoxal phosphate phosphatase (PDXP), a negative regulator of intracellular vitamin B6 levels, is under the control of the hypoxia-inducible transcription factor (HIF1), a central driver of T cell metabolism. Furthermore, by adoptive transfer of CD8 T cells into a C57BL/6 mouse melanoma model, we demonstrate the requirement for vitamin B6-dependent enzyme activity in mediating effective anti-tumor responses. Our findings show that vitamin B6 metabolism is required for CD8+ T cell proliferation and effector differentiation in vitro and in vivo. Targeting vitamin B6 metabolism may therefore serve as an immunodulatory strategy to improve anti-tumor immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Vitamina B 6 , Ácido Amino-Oxiacético/farmacologia , Animais , Linfócitos T CD8-Positivos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Fosfoproteínas Fosfatases , Proteômica , Fosfato de Piridoxal/antagonistas & inibidores , Vitamina B 6/metabolismo
8.
Front Immunol ; 12: 633586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054802

RESUMO

Myeloid cell interactions with cells of the adaptive immune system are an essential aspect of immunity. A key aspect of that interrelationship is its modulation by the microenvironment. Oxygen is known to influence myelosuppression of T cell activation in part via the Hypoxia inducible (HIF) transcription factors. A number of drugs that act on the HIF pathway are currently in clinical use and it is important to evaluate how they act on immune cell function as part of a better understanding of how they will influence patient outcomes. We show here that increased activation of the HIF pathway, either through deletion of the negative regulator of HIF, the von Hippel-Lindau (VHL) gene, in myeloid cells, or through pharmacological inhibitors of VHL-mediated degradation of HIF, potently suppresses T cell proliferation in myeloid cell/T cell culture. These data demonstrate that both pharmacological and genetic activation of HIF in myeloid cells can suppress adaptive cell immune response.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glicina/análogos & derivados , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoquinolinas/farmacologia , Macrófagos/efeitos dos fármacos , Oxigênio/metabolismo , Imunidade Adaptativa , Animais , Linfócitos T CD8-Positivos/fisiologia , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Glicina/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Camundongos , Camundongos Transgênicos , Oxigênio/farmacologia , Proteína Supressora de Tumor Von Hippel-Lindau/genética
9.
Cancer Immunol Res ; 9(4): 401-414, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33602720

RESUMO

Adoptive transfer of antitumor cytotoxic T cells is an emerging form of cancer immunotherapy. A key challenge to expanding the utility of adoptive cell therapies is how to enhance the survival and function of the transferred T cells. Immune-cell survival requires adaptation to different microenvironments and particularly to the hypoxic milieu of solid tumors. The hypoxia-inducible factor (HIF) transcription factors are an essential aspect of this adaptation. In this study, we undertook experiments to define structural determinants of HIF that potentiate antitumor efficacy in cytotoxic T cells. We first created retroviral vectors to deliver ectopic expression of HIF1α and HIF2α in mouse CD8+ T cells, together or individually and with or without sensitivity to the oxygen-dependent HIFα inhibitors Von Hippel-Lindau and factor-inhibiting HIF (FIH). HIF2α, but not HIF1α, drove broad transcriptional changes in CD8+ T cells, resulting in increased cytotoxic differentiation and cytolytic function against tumor targets. A specific mutation replacing the hydroxyl group-acceptor site for FIH in HIF2α gave rise to the most effective antitumor T cells after adoptive transfer in vivo In addition, codelivering an FIH-insensitive form of HIF2α with an anti-CD19 chimeric antigen receptor greatly enhanced cytolytic function of human CD8+ T cells against lymphoma cells both in vitro and in a xenograft adoptive transfer model. These experiments point to a means to increase the antitumor efficacy of therapeutic CD8+ T cells via ectopic expression of the HIF transcription factor.See related Spotlight on p. 364.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/imunologia , Linfócitos T CD8-Positivos/imunologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Hipóxia/imunologia , Imunoterapia Adotiva , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Linhagem Celular Tumoral , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição , Microambiente Tumoral
10.
FEBS J ; 288(24): 7143-7161, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33410283

RESUMO

Hypoxia has a significant impact on many physiological and pathological processes. Over the recent years, its role in modulation of epigenetic remodelling has also become clearer. In cancer, low oxygen environments and aberrant epigenomes often go hand in hand, and changes in DNA methylation are now commonly recognised as potential outcome indicators. TET (ten-eleven translocation) family enzymes are alpha-ketoglutarate-, iron- and oxygen-dependent DNA demethylases and are key players in these processes. Although TETs have historically been considered tumour suppressors, recent studies suggest that their functions in cancer might not be straightforward. Recently, inhibition of TETs has been reported to have positive impact in cancer immunotherapy and vaccination studies. This underlines the current interest in developing targeted pharmaceutical inhibitors of these enzymes. Here, we will survey the complexity of TET roles in cancer, and its hypoxic modulation, as well as highlight the potential of these enzymes as therapeutic targets.


Assuntos
Oxigenases de Função Mista/metabolismo , Neoplasias/enzimologia , Oxigênio/metabolismo , Animais , Humanos , Oxigenases de Função Mista/química , Oxigenases de Função Mista/genética
11.
Hum Mol Genet ; 30(3-4): 160-171, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33438013

RESUMO

Despite the intense global efforts towards an effective treatment of glioblastoma (GB), current therapeutic options are unsatisfactory with a median survival time of 12-15 months after diagnosis, which has not improved significantly over more than a decade. The high tumoral heterogeneity confers resistance to therapies, which has hindered a successful clinical outcome, GB remaining among the deadliest cancers. A hallmark of GB is its high recurrence rate, which has been attributed to the presence of a small subpopulation of tumor cells called GB stem-like cells (GSC). In the present work, the efficacy of a multimodal strategy combining microRNA (miRNA) modulation with new generation multitargeted tyrosine kinase inhibitors (imatinib and axitinib) was investigated aiming at tackling this subpopulation of GB cells. MiR-128 and miR-302a were selected as attractive therapeutic candidates on the basis of previous findings reporting that reestablishment of their decreased expression levels in GSC resulted in cell differentiation, which could represent a possible strategy to sensitize GSC to chemotherapy. Our results show that overexpression of miR-128 or miR-302a induced GSC differentiation, which enhanced senescence mediated by axitinib treatment, thus further impairing GSC proliferation. We also provided evidence for the capacity of GSC to efficiently internalize functionalized stable nucleic acid lipid particles, previously developed and successfully applied in our laboratory to target GB. Taken together, our findings will be important in the future design of a GB-targeted multimodal miRNA-based gene therapy, combining overexpression of miR-128 or miR-302a with axitinib treatment, endowed with the ability to overcome drug resistance.


Assuntos
Axitinibe/uso terapêutico , Diferenciação Celular , Glioblastoma/tratamento farmacológico , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Axitinibe/farmacologia , Linhagem Celular Tumoral , Terapia Combinada , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Humanos , Mesilato de Imatinib/farmacologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Regulação para Cima
12.
Blood Adv ; 4(18): 4483-4493, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32941648

RESUMO

Cancer immunotherapy is advancing rapidly and gene-modified T cells expressing chimeric antigen receptors (CARs) show particular promise. A challenge of CAR-T cell therapy is that the ex vivo-generated CAR-T cells become exhausted during expansion in culture, and do not persist when transferred back to patients. It has become clear that naive and memory CD8 T cells perform better than the total CD8 T-cell populations in CAR-T immunotherapy because of better expansion, antitumor activity, and persistence, which are necessary features for therapeutic success and prevention of disease relapse. However, memory CAR-T cells are rarely used in the clinic due to generation challenges. We previously reported that mouse CD8 T cells cultured with the S enantiomer of the immunometabolite 2-hydroxyglutarate (S-2HG) exhibit enhanced antitumor activity. Here, we show that clinical-grade human donor CAR-T cells can be generated from naive precursors after culture with S-2HG. S-2HG-treated CAR-T cells establish long-term memory cells in vivo and show superior antitumor responses when compared with CAR-T cells generated with standard clinical protocols. This study provides the basis for a phase 1 clinical trial evaluating the activity of S-2HG-treated CD19-CAR-T cells in patients with B-cell malignancies.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Animais , Linfócitos T CD8-Positivos , Glutaratos , Humanos , Imunoterapia Adotiva , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética
13.
Hum Mol Genet ; 28(21): 3664-3679, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31518391

RESUMO

A great deal of evidence revealing that lipid metabolism is drastically altered during tumorigenesis has been accumulated. In this work, glucosylceramide synthase (GCS) was targeted, using RNA interference technology (siRNAs), in U87 and DBTRG human glioblastoma (GBM) cells, as in both cell types GCS showed to be overexpressed with respect to normal human astrocytes. The efficacy of a combined therapy to tackle GBM, allying GCS silencing to the new generation chemotherapeutics sunitinib and axitinib, or to the alkylating drugs etoposide and temozolomide, is evaluated here for the first time. With this purpose, studies addressing GBM cell viability and proliferation, cell cycle and apoptosis were performed, which revealed that combination of GCS silencing with axitinib treatment represents a promising therapeutic approach. The reduction of cell viability induced by this combined therapy is proposed to be mediated by excessive production of reactive oxygen species. This work, identifying GCS as a key molecular target to increase GBM susceptibility to a new generation chemotherapeutic, opens windows to the development of innovative strategies to halt GBM recurrence after surgical resection.


Assuntos
Axitinibe/farmacologia , Glioblastoma/genética , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/genética , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Glucosiltransferases/metabolismo , Humanos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1860(12): 2619-2634, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291923

RESUMO

BACKGROUND: Cell-penetrating peptides (CPPs) have been extensively exploited in gene therapy approaches as vectors for intracellular delivery of bioactive molecules. The ability of CPPs to be internalized into cells and their capacity to complex nucleic acids depend on their molecular structure, both primary and secondary, namely regarding hydrophobicity/hydrophilicity. CPP acylation has been used as a strategy to improve this structural feature. METHODS: Acyl groups (from 6 to 18 carbon atoms) were attached to the S413-PV peptide and their effects on the peptide competence to complex siRNAs and to mediate gene silencing in glioblastoma (GBM) cells were studied. A systematic characterization of membrane interactions with S413-PV acyl-derivatives was also conducted, using different biophysical techniques (surface pressure-area isotherms in Langmuir monolayers, DSC and 31P NMR) to unravel a relationship between CPP biological activity and CPP effects on membrane stability and lipid organization. RESULTS: A remarkable concordance was noticed between acylated-S413-PV peptide competence to promote gene silencing in GBM cells and disturbance induced in membrane models, the lauroyl- and myristoyl-S413-PV peptides being the most effective. A cut-off effect was described for the first time regarding the influence of acyl-chain length on CPP bioactivity. CONCLUSIONS: C12-S413-PV showed high capacity to destabilize lipid bilayers, to escape from lysosomal degradation and to mediate gene silencing without promoting cytotoxicity. GENERAL SIGNIFICANCE: Besides unraveling a new CPP with high potential to be employed as a gene delivery vector, this work emphasizes the benefit from allying biophysical and biological studies towards a proper CPP structural refinement for successful pre-clinical/clinical application.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Metabolismo dos Lipídeos , Ácidos Nucleicos/administração & dosagem , Peptídeos/metabolismo , Acilação , Linhagem Celular Tumoral , Humanos , Bicamadas Lipídicas/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ácidos Nucleicos/metabolismo , Transfecção
15.
Hum Mol Genet ; 26(22): 4375-4387, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28973155

RESUMO

Glioblastoma (GBM) is a deadly and therapy resistant malignant brain tumour, characterized by an aggressive and diffuse growth pattern, which prevents complete surgical resection. Despite advances in the identification of genomic and molecular alterations that fuel the tumour, average patient survival post-diagnosis remains very low (∼14.6-months). In addition to being highly heterogeneous, GBM tumour cells exhibit high adaptive capacity to targeted molecular therapies owing to an established network of signalling cascades with functional redundancy, which provides them with robust compensatory survival mechanisms. Here, we investigated whether a multimodal strategy combining multitargeted tyrosine kinase inhibitors (MTKIs) and microRNA (miRNA) modulation could overcome the signalling pathway redundancy in GBM and, hence, promote tumour cell death. By performing a high-throughput screening, we identified a myriad of miRNAs, including those belonging to the miR-302-3p/372-3p/373-3p/520-3p family, which coordinately act with the MTKI sunitinib to decrease GBM cell viability. Two members of this family, hsa-miRNA-302a-3p and hsa-miRNA-520 b, were found to modulate the expression of receptor tyrosine kinase mediators (including AKT1, PIK3CA and SOS1) in U87 and DBTRG human GBM cells. Importantly, administration of mimics of these miRNAs with sunitinib or axitinib resulted in decreased tumour cell proliferation and enhanced cell death, whereas no significant effect was observed when coupling miRNA modulation with temozolomide, the first-line drug for GBM therapy. Overall, our results provide evidence that combining the 'horizontal' inhibition of signalling pathways promoted by MTKIs with the 'vertical' inhibition of the downstream signalling cascade promoted by hsa-miR-302a-3p and hsa-miR-520 b constitutes a promising approach towards GBM treatment.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioblastoma/genética , Glioblastoma/terapia , MicroRNAs/genética , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Terapia Combinada , Predisposição Genética para Doença , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , MicroRNAs/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA