Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Trends Parasitol ; 40(6): 446-448, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38772757

RESUMO

Liebold et al. recently revealed how the identity of dying cells drives distinct changes to the macrophages which engulf and clear them, a process known as efferocytosis. During infection with the helminth Schistosoma mansoni, liver macrophages recapitulate these phenotypes, mediated by Axl/MerTK receptors and regulating egg burdens.


Assuntos
Macrófagos , Fagocitose , Schistosoma mansoni , Animais , Macrófagos/imunologia , Macrófagos/parasitologia , Schistosoma mansoni/fisiologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/parasitologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/imunologia , Humanos , Fígado/parasitologia , Fígado/imunologia , Receptor Tirosina Quinase Axl , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/genética , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/fisiologia , Eferocitose
2.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255817

RESUMO

Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.


Assuntos
Antibacterianos , Células-Tronco Mesenquimais , Humanos , Técnicas de Cultura , Axônios , Transporte Biológico
3.
Transplantation ; 105(8): 1666-1676, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33982911

RESUMO

Although significant progress has been made to improve short-term survival of transplant patients, long-term acceptance of allografts in solid organ and hematopoietic stem cell (HSC) transplantation is still a significant challenge. Current therapeutics for preventing or treating allograft rejection rely on potent immunosuppressive drugs that primarily target T cells of the adaptive immune response. Promising advances in transplant immunology have highlighted the importance of innate immune responses in allograft acceptance and rejection. Recent studies have demonstrated that innate immune cells are capable of mediating memory-like responses during inflammation, a term known as trained innate immunity. In this process, innate immune cells, such as macrophages and monocytes, undergo metabolic and epigenetic changes in response to a primary stimulus with a pathogen or their products that result in faster and more robust responses to a secondary stimulus. There is also some evidence to suggest that innate immune cells or their progenitors may be more anti-inflammatory after initial stimulation with appropriate agents, such as helminth products. Although this phenomenon has primarily been studied in the context of infection, there is emerging evidence to suggest that it could play a vital role in transplantation rejection and tolerance. Mechanisms of training innate immune cells and their progenitors in the bone marrow are therefore attractive targets for mediating long-term solid organ and HSC transplant tolerance. In this review, we highlight the potential role of proinflammatory and anti-inflammatory mechanisms of trained innate immunity in solid organ and HSC transplantation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Imunidade Inata/imunologia , Transplante de Órgãos , Animais , Células-Tronco Hematopoéticas/imunologia , Humanos , Tolerância Imunológica , Inflamação/imunologia
4.
J Immunol ; 206(7): 1618-1630, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33579723

RESUMO

Certain proinflammatory stimuli can metabolically and epigenetically modify monocytes/macrophages or NK cells to be more responsive to secondary stimuli, a process known as trained innate immunity. However, the longevity of trained innate immunity is unclear. In this study, we report that Fasciola hepatica excretory-secretory products (FHES) can imprint an anti-inflammatory phenotype on long-term hematopoietic stem cells (HSCs) and monocyte precursor populations, enhancing their proliferation and differentiation into anti-inflammatory Ly6Clow monocytes. These monocytes expand and populate multiple compartments within mice, conferring hyporesponsiveness to proinflammatory stimuli and reduced susceptibility to induction of experimental autoimmune encephalomyelitis. Mice treated with FHES had enhanced alternatively activated macrophages, reduced Th1 and Th17 responses, and attenuating effects on autoimmunity that persisted for 8 mo. Furthermore, transplantation of HSCs from FHES-treated mice transferred the anti-inflammatory phenotype to naive mice. Our findings demonstrate that helminth products can modulate HSCs to promote development of anti-inflammatory myeloid cells that attenuate T cell-mediated autoimmune disease.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Fasciola hepatica/fisiologia , Células-Tronco Hematopoéticas/fisiologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Macrófagos/fisiologia , Monócitos/fisiologia , Esclerose Múltipla/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Antígenos Ly/metabolismo , Autoimunidade , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos , Camundongos
5.
J Immunol ; 205(7): 1909-1919, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32859729

RESUMO

IL-33 is known to promote type 2 immune responses through ST2, a component of the IL-33R complex, expressed primarily on mast cells, Th2 cells, group 2 innate lymphoid cells and regulatory T cells, and to a lesser extent, on NK cells and Th1 cells. Consistent with previous studies, we found that IL-33 polarized alternatively activated macrophages (AAMΦ) in vivo. However, in vitro stimulation of murine bone marrow-derived or peritoneal macrophages with IL-33 failed to promote arginase activity or expression of YM-1 or Retnla, markers of AAMΦ. Furthermore, macrophages have low/no basal expression of ST2. This suggested that alternative activation of macrophages may involve an IL-33-responsive third-party cell. Because mast cells have the highest expression of ST2 relative to other leukocytes, we focused on this cell type. Coculture experiments showed that IL-33-stimulated mast cells polarized AAMΦ through production of soluble factors. IL-33-stimulated mast cells produced a range of cytokines, including IL-6 and IL-13. Mast cell-derived IL-13 was required for induction of AAMΦ, whereas mast cell-derived IL-6 enhanced macrophage responsiveness to IL-13 via upregulation of the IL-4Rα receptor. Furthermore, we found that AAMΦ polarized by IL-33-stimulated mast cells could suppress proliferation and IL-17 and IFN-γ production by T cells. Finally, we show that AAMΦ polarized by IL-33-stimulated mast cells attenuated the encephalitogenic function of T cells in the experimental autoimmune encephalomyelitis model. Our findings reveal that IL-33 can promote immunosuppressive responses by polarizing AAMΦ via mast cell-derived IL-6 and IL-13.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interleucina-33/metabolismo , Macrófagos/imunologia , Mastócitos/imunologia , Esclerose Múltipla/imunologia , Linfócitos T/imunologia , Animais , Diferenciação Celular , Modelos Animais de Doenças , Feminino , Humanos , Tolerância Imunológica , Interleucina-33/genética , Ativação de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Biomaterials ; 239: 119833, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32062479

RESUMO

Engineering a pro-regenerative immune response following scaffold implantation is integral to functional tissue regeneration. The immune response to implanted biomaterials is determined by multiple factors, including biophysical cues such as material stiffness, topography and particle size. In this study we developed an immune modulating scaffold for bone defect healing containing bone mimetic nano hydroxyapatite particles (BMnP). We first demonstrate that, in contrast to commercially available micron-sized hydroxyapatite particles, in-house generated BMnP preferentially polarize human macrophages towards an M2 phenotype, activate the transcription factor cMaf and specifically enhance production of the anti-inflammatory cytokine, IL-10. Furthermore, nano-particle treated macrophages enhance mesenchymal stem cell (MSC) osteogenesis in vitro and this occurs in an IL-10 dependent manner, demonstrating a direct pro-osteogenic role for this cytokine. BMnPs were also capable of driving pro-angiogenic responses in human macrophages and HUVECs. Characterization of immune cell subsets following incorporation of functionalized scaffolds into a rat femoral defect model revealed a similar profile, with micron-sized hydroxyapatite functionalized scaffolds eliciting pro-inflammatory responses characterized by infiltrating T cells and elevated expression of M1 macrophages markers compared to BMnP functionalized scaffolds which promoted M2 macrophage polarization, tissue vascularization and increased bone volume. Taken together these results demonstrate that nano-sized Hydroxyapatite has immunomodulatory potential and is capable of directing anti-inflammatory innate immune-mediated responses that are associated with tissue repair and regeneration.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Animais , Regeneração Óssea , Interleucina-10 , Ativação de Macrófagos , Macrófagos , Ratos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA