Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Hum Genet ; 32(7): 864-870, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38760421

RESUMO

Carpenter syndrome (CRPTS) is a rare autosomal recessive condition caused by biallelic variants in genes that encode negative regulators of hedgehog signalling (RAB23 [CRPT1] or, more rarely, MEGF8 [CRPT2]), and is characterised by craniosynostosis, polysyndactyly, and other congenital abnormalities. We describe a further six families comprising eight individuals with MEGF8-associated CRPT2, increasing the total number of reported cases to fifteen, and refine the phenotype of CRPT2 compared to CRPT1. The core features of craniosynostosis, polysyndactyly and (in males) cryptorchidism are almost universal in both CRPT1 and CRPT2. However, laterality defects are present in nearly half of those with MEGF8-associated CRPT2, but are rare in RAB23-associated CRPT1. Craniosynostosis in CRPT2 commonly involves a single midline suture in comparison to the multi-suture craniosynostosis characteristic of CRPT1. No patient to date has carried two MEGF8 gene alterations that are both predicted to lead to complete loss-of-function, suggesting that a variable degree of residual MEGF8 activity may be essential for viability and potentially contributing to variable phenotypic severity. These data refine the phenotypic spectrum of CRPT2 in comparison to CRPT1 and more than double the number of likely pathogenic MEGF8 variants in this rare disorder.


Assuntos
Acrocefalossindactilia , Fenótipo , Humanos , Masculino , Feminino , Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Criança , Pré-Escolar , Lactente , Proteínas rab de Ligação ao GTP/genética , Linhagem , Proteínas de Membrana/genética , Adolescente , Mutação
2.
Brain ; 144(5): 1435-1450, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33880529

RESUMO

Constitutional heterozygous mutations of ATP1A2 and ATP1A3, encoding for two distinct isoforms of the Na+/K+-ATPase (NKA) alpha-subunit, have been associated with familial hemiplegic migraine (ATP1A2), alternating hemiplegia of childhood (ATP1A2/A3), rapid-onset dystonia-parkinsonism, cerebellar ataxia-areflexia-progressive optic atrophy, and relapsing encephalopathy with cerebellar ataxia (all ATP1A3). A few reports have described single individuals with heterozygous mutations of ATP1A2/A3 associated with severe childhood epilepsies. Early lethal hydrops fetalis, arthrogryposis, microcephaly, and polymicrogyria have been associated with homozygous truncating mutations in ATP1A2. We investigated the genetic causes of developmental and epileptic encephalopathies variably associated with malformations of cortical development in a large cohort and identified 22 patients with de novo or inherited heterozygous ATP1A2/A3 mutations. We characterized clinical, neuroimaging and neuropathological findings, performed in silico and in vitro assays of the mutations' effects on the NKA-pump function, and studied genotype-phenotype correlations. Twenty-two patients harboured 19 distinct heterozygous mutations of ATP1A2 (six patients, five mutations) and ATP1A3 (16 patients, 14 mutations, including a mosaic individual). Polymicrogyria occurred in 10 (45%) patients, showing a mainly bilateral perisylvian pattern. Most patients manifested early, often neonatal, onset seizures with a multifocal or migrating pattern. A distinctive, 'profound' phenotype, featuring polymicrogyria or progressive brain atrophy and epilepsy, resulted in early lethality in seven patients (32%). In silico evaluation predicted all mutations to be detrimental. We tested 14 mutations in transfected COS-1 cells and demonstrated impaired NKA-pump activity, consistent with severe loss of function. Genotype-phenotype analysis suggested a link between the most severe phenotypes and lack of COS-1 cell survival, and also revealed a wide continuum of severity distributed across mutations that variably impair NKA-pump activity. We performed neuropathological analysis of the whole brain in two individuals with polymicrogyria respectively related to a heterozygous ATP1A3 mutation and a homozygous ATP1A2 mutation and found close similarities with findings suggesting a mainly neural pathogenesis, compounded by vascular and leptomeningeal abnormalities. Combining our report with other studies, we estimate that ∼5% of mutations in ATP1A2 and 12% in ATP1A3 can be associated with the severe and novel phenotypes that we describe here. Notably, a few of these mutations were associated with more than one phenotype. These findings assign novel, 'profound' and early lethal phenotypes of developmental and epileptic encephalopathies and polymicrogyria to the phenotypic spectrum associated with heterozygous ATP1A2/A3 mutations and indicate that severely impaired NKA pump function can disrupt brain morphogenesis.


Assuntos
Encefalopatias/genética , Epilepsia/genética , Polimicrogiria/genética , ATPase Trocadora de Sódio-Potássio/genética , Adolescente , Animais , Células COS , Criança , Pré-Escolar , Chlorocebus aethiops , Feminino , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo
3.
Am J Med Genet A ; 185(9): 2690-2718, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205886

RESUMO

Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.


Assuntos
Encéfalo/anormalidades , Encéfalo/patologia , Doenças em Gêmeos/patologia , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto , Doenças em Gêmeos/genética , Feminino , Humanos , Recém-Nascido , Masculino , Gravidez , Literatura de Revisão como Assunto
4.
Front Mol Neurosci ; 13: 12, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32116545

RESUMO

Multiple TREX mRNA export complex subunits (e.g., THOC1, THOC2, THOC5, THOC6, THOC7) have now been implicated in neurodevelopmental disorders (NDDs), neurodegeneration and cancer. We previously implicated missense and splicing-defective THOC2 variants in NDDs and a broad range of other clinical features. Here we report 10 individuals from nine families with rare missense THOC2 variants including the first case of a recurrent variant (p.Arg77Cys), and an additional individual with an intragenic THOC2 microdeletion (Del-Ex37-38). Ex vivo missense variant testing and patient-derived cell line data from current and published studies show 9 of the 14 missense THOC2 variants result in reduced protein stability. The splicing-defective and deletion variants result in a loss of small regions of the C-terminal THOC2 RNA binding domain (RBD). Interestingly, reduced stability of THOC2 variant proteins has a flow-on effect on the stability of the multi-protein TREX complex; specifically on the other NDD-associated THOC subunits. Our current, expanded cohort refines the core phenotype of THOC2 NDDs to language disorder and/or ID, with a variable severity, and disorders of growth. A subset of affected individuals' has severe-profound ID, persistent hypotonia and respiratory abnormalities. Further investigations to elucidate the pathophysiological basis for this severe phenotype are warranted.

5.
Eur J Med Genet ; 63(1): 103624, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30690204

RESUMO

The Na+/K+- ATPase acts as an ion pump maintaining the essential plasma membrane potential in all mammalian cell types, and is essential for many cellular functions. There are four α isoforms (α1, α2, α3 and α4) with distinct expression patterns, kinetic properties and substrate affinity. The α2-isoform is encoded by ATP1A2 and evidence supports its utmost importance in Cl- homeostasis in neurons, and in the function of respiratory neurons at birth. Monallelic pathogenic variants in ATP1A2 are associated with familial hemiplegic migraine type 2 (FHM2) and on rare occasions with alternating hemiplegia of childhood 1 (AHC1). To date, no instances of biallelic loss of function variants have been reported in humans. However, Atp1a2 homozygous loss of function knockout mice (α2-/- mice) show severe motor deficits, with lack of spontaneous movements, and are perinatally lethal due to absent respiratory activity. In this report we describe three newborns from two unrelated families, who died neonatally, presenting in utero with an unusual form of fetal hydrops, seizures and polyhydramnios. At birth they had multiple joint contractures (e.g. arthrogryposis), microcephaly, malformations of cortical development, dysmorphic features and severe respiratory insufficiency. Biallelic loss of function variants in ATP1A2, predicted to be pathogenic were found on whole exome sequencing. We propose that this is a distinctive new syndrome caused by complete absence of Na+/K+- ATPase α2-isoform expression.


Assuntos
Artrogripose/genética , Hidropisia Fetal/genética , Microcefalia/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/genética , Alelos , Animais , Artrogripose/patologia , Criança , Feminino , Predisposição Genética para Doença , Humanos , Hidropisia Fetal/patologia , Recém-Nascido , Mutação com Perda de Função/genética , Masculino , Camundongos , Microcefalia/patologia , Enxaqueca com Aura/patologia , Fenótipo , Gravidez , Isoformas de Proteínas/genética , Sequenciamento do Exoma
6.
Am J Med Genet A ; 173(9): 2422-2427, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28639748

RESUMO

Skeletal overgrowth is a characteristic of several genetic disorders that are linked to specific molecular signaling cascades. Recently, we established a novel overgrowth syndrome (Kosaki overgrowth syndrome, OMIM #616592) arising from a de novo mutation in PDGFRB, that is, c.1751C>G p.(Pro584Arg). Subsequently, other investigators provided in vitro molecular evidence that this specific mutation in the juxtamembrane domain of PDGFRB causes an overgrowth phenotype and is the first gain-of-function point mutation of PDGFRB to be reported in humans. Here, we report the identification of a mutation in PDGFRB, c.1696T>C p.(Trp566Arg), in two unrelated patients with skeletal overgrowth, further confirming the existence of PDGFRB-related overgrowth syndrome arising from mutations in the juxtamembrane domain of PDGFRB. A review of all four of these patients with an overgrowth phenotype and PDGFRB mutations revealed postnatal skeletal overgrowth, premature aging, cognitive impairment, neurodegeneration, and a prominent connective tissue component to this complex phenotype. From a functional standpoint, hypermorphic mutations in PDGFRB lead to Kosaki overgrowth syndrome, infantile myofibromatosis (OMIM #228550), and Penttinen syndrome (OMIM #601812), whereas hypomorphic mutations lead to idiopathic basal ganglia calcification (OMIM #615007). In conclusion, a specific class of mutations in PDGFRB causes a clinically recognizable syndromic form of skeletal overgrowth.


Assuntos
Acro-Osteólise/genética , Doenças dos Gânglios da Base/genética , Calcinose/genética , Deformidades Congênitas dos Membros/genética , Miofibromatose/congênito , Progéria/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Acro-Osteólise/fisiopatologia , Doenças dos Gânglios da Base/fisiopatologia , Osso e Ossos/fisiopatologia , Calcinose/fisiopatologia , Feminino , Humanos , Deformidades Congênitas dos Membros/fisiopatologia , Masculino , Miofibromatose/genética , Miofibromatose/fisiopatologia , Fenótipo , Mutação Puntual , Progéria/fisiopatologia , Transdução de Sinais/genética
7.
Am J Hum Genet ; 98(6): 1256-1265, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27236920

RESUMO

Curry-Jones syndrome (CJS) is a multisystem disorder characterized by patchy skin lesions, polysyndactyly, diverse cerebral malformations, unicoronal craniosynostosis, iris colobomas, microphthalmia, and intestinal malrotation with myofibromas or hamartomas. Cerebellar medulloblastoma has been described in a single affected individual; in another, biopsy of skin lesions showed features of trichoblastoma. The combination of asymmetric clinical features, patchy skin manifestations, and neoplastic association previously led to the suggestion that this could be a mosaic condition, possibly involving hedgehog (Hh) signaling. Here, we show that CJS is caused by recurrent somatic mosaicism for a nonsynonymous variant in SMO (c.1234C>T [p.Leu412Phe]), encoding smoothened (SMO), a G-protein-coupled receptor that transduces Hh signaling. We identified eight mutation-positive individuals (two of whom had not been reported previously) with highly similar phenotypes and demonstrated varying amounts of the mutant allele in different tissues. We present detailed findings from brain MRI in three mutation-positive individuals. Somatic SMO mutations that result in constitutive activation have been described in several tumors, including medulloblastoma, ameloblastoma, and basal cell carcinoma. Strikingly, the most common of these mutations is the identical nonsynonymous variant encoding p.Leu412Phe. Furthermore, this substitution has been shown to activate SMO in the absence of Hh signaling, providing an explanation for tumor development in CJS. This raises therapeutic possibilities for using recently generated Hh-pathway inhibitors. In summary, our work uncovers the major genetic cause of CJS and illustrates strategies for gene discovery in the context of low-level tissue-specific somatic mosaicism.


Assuntos
Anormalidades Craniofaciais/etiologia , Intestinos/anormalidades , Mutação/genética , Anormalidades da Pele/etiologia , Receptor Smoothened/genética , Sindactilia/etiologia , Pré-Escolar , Anormalidades Craniofaciais/patologia , Feminino , Humanos , Lactente , Recém-Nascido , Intestinos/patologia , Masculino , Transdução de Sinais , Anormalidades da Pele/patologia , Sindactilia/patologia
9.
J Med Genet ; 52(7): 476-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26032025

RESUMO

INTRODUCTION: Mesomelic dysplasias are a group of skeletal disorders characterised by shortness of the middle limb segments (mesomelia). They are divided into 11 different categories. Among those without known molecular basis is mesomelic dysplasia Savarirayan type, characterised by severe shortness of the middle segment of the lower limb. OBJECTIVE: To identify the molecular cause of mesomelic dysplasia Savarirayan type. METHODS AND RESULTS: We performed array comparative genomic hybridisation in three unrelated patients with mesomelic dysplasia Savarirayan type and identified 2 Mb overlapping de novo microdeletions on chromosome 6p22.3. The deletions encompass four known genes: MBOAT1, E2F3, CDKAL1 and SOX4. All patients showed mesomelia of the lower limbs with hypoplastic tibiae and fibulae. We identified a fourth patient with intellectual disability and an overlapping slightly larger do novo deletion also encompassing the flanking gene ID4. Given the fact that the fourth patient had no skeletal abnormalities and none of the genes in the deleted interval are known to be associated with abnormalities in skeletal development, other mutational mechanisms than loss of function of the deleted genes have to be considered. Analysis of the genomic region showed that the deletion removes two regulatory boundaries and brings several potential limb enhancers into close proximity of ID4. Thus, the deletion could result in the aberrant activation and misexpression of ID4 in the limb bud, thereby causing the mesomelic dysplasia. CONCLUSIONS: Our data indicate that the distinct deletion 6p22.3 is associated with mesomelic dysplasia Savarirayan type featuring hypoplastic, triangular-shaped tibiae and abnormally shaped or hypoplastic fibulae.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos Par 6/genética , Fíbula/anormalidades , Proteínas Inibidoras de Diferenciação/metabolismo , Perna (Membro)/anormalidades , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Rádio (Anatomia)/anormalidades , Deleção de Sequência/genética , Tíbia/anormalidades , Ulna/anormalidades , Acetiltransferases/genética , Sequência de Bases , Hibridização Genômica Comparativa , Quinase 5 Dependente de Ciclina/genética , Fator de Transcrição E2F3/genética , Fíbula/patologia , Humanos , Proteínas Inibidoras de Diferenciação/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Rádio (Anatomia)/patologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição SOXC , Análise de Sequência de DNA , Tíbia/patologia , Ulna/patologia , tRNA Metiltransferases
10.
Am J Hum Genet ; 93(1): 158-66, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23810382

RESUMO

SHORT syndrome is a rare, multisystem disease characterized by short stature, anterior-chamber eye anomalies, characteristic facial features, lipodystrophy, hernias, hyperextensibility, and delayed dentition. As part of the FORGE (Finding of Rare Disease Genes) Canada Consortium, we studied individuals with clinical features of SHORT syndrome to identify the genetic etiology of this rare disease. Whole-exome sequencing in a family trio of an affected child and unaffected parents identified a de novo frameshift insertion, c.1906_1907insC (p.Asn636Thrfs*18), in exon 14 of PIK3R1. Heterozygous mutations in exon 14 of PIK3R1 were subsequently identified by Sanger sequencing in three additional affected individuals and two affected family members. One of these mutations, c.1945C>T (p.Arg649Trp), was confirmed to be a de novo mutation in one affected individual and was also identified and shown to segregate with the phenotype in an unrelated family. The other mutation, a de novo truncating mutation (c.1971T>G [p.Tyr657*]), was identified in another affected individual. PIK3R1 is involved in the phosphatidylinositol 3 kinase (PI3K) signaling cascade and, as such, plays an important role in cell growth, proliferation, and survival. Functional studies on lymphoblastoid cells with the PIK3R1 c.1906_1907insC mutation showed decreased phosphorylation of the downstream S6 target of the PI3K-AKT-mTOR pathway. Our findings show that PIK3R1 mutations are the major cause of SHORT syndrome and suggest that the molecular mechanism of disease might involve downregulation of the PI3K-AKT-mTOR pathway.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/genética , Mutação da Fase de Leitura , Transtornos do Crescimento/genética , Hipercalcemia/genética , Doenças Metabólicas/genética , Nefrocalcinose/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Exoma , Éxons , Feminino , Triagem de Portadores Genéticos , Heterozigoto , Humanos , Recém-Nascido , Masculino , Linhagem , Fenótipo , Fosforilação , Transdução de Sinais
11.
N Engl J Med ; 368(19): 1809-16, 2013 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-23656646

RESUMO

This report identifies human skeletal diseases associated with mutations in WNT1. In 10 family members with dominantly inherited, early-onset osteoporosis, we identified a heterozygous missense mutation in WNT1, c.652T→G (p.Cys218Gly). In a separate family with 2 siblings affected by recessive osteogenesis imperfecta, we identified a homozygous nonsense mutation, c.884C→A, p.Ser295*. In vitro, aberrant forms of the WNT1 protein showed impaired capacity to induce canonical WNT signaling, their target genes, and mineralization. In mice, Wnt1 was clearly expressed in bone marrow, especially in B-cell lineage and hematopoietic progenitors; lineage tracing identified the expression of the gene in a subset of osteocytes, suggesting the presence of altered cross-talk in WNT signaling between the hematopoietic and osteoblastic lineage cells in these diseases.


Assuntos
Mutação , Osteogênese Imperfeita/genética , Osteoporose/genética , Proteína Wnt1/genética , Adolescente , Adulto , Idade de Início , Idoso , Animais , Criança , Feminino , Genes Dominantes , Genes Recessivos , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Linhagem , Proteína Wnt1/metabolismo , Adulto Jovem
12.
Nat Genet ; 44(11): 1249-54, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23023332

RESUMO

Elevated transforming growth factor (TGF)-ß signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-ß signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-ß in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-ß activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-ß signaling cascades and higher expression of TGF-ß-responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-ß signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.


Assuntos
Aneurisma Aórtico/genética , Aracnodactilia/genética , Craniossinostoses/genética , Proteínas de Ligação a DNA , Síndrome de Marfan/genética , Proteínas Proto-Oncogênicas , Fator de Crescimento Transformador beta , Animais , Aracnodactilia/metabolismo , Células Cultivadas , Craniossinostoses/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fibroblastos , Humanos , Síndrome de Loeys-Dietz/genética , Síndrome de Marfan/metabolismo , Camundongos , Mutação , Fenótipo , Fosforilação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/antagonistas & inibidores , Fator de Crescimento Transformador beta/genética , Peixe-Zebra
13.
Am J Med Genet A ; 158A(10): 2393-406, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22965664

RESUMO

Rhombencephalosynapsis (RES) is an uncommon cerebellar malformation characterized by fusion of the hemispheres without an intervening vermis. Frequently described in association with Gómez-López-Hernández syndrome, RES also occurs in conjunction with VACTERL features and with holoprosencephaly (HPE). We sought to determine the full phenotypic spectrum of RES in a large cohort of patients. Information was obtained through database review, patient questionnaire, radiographic, and morphologic assessment, and statistical analysis. We assessed 53 patients. Thirty-three had alopecia, 3 had trigeminal anesthesia, 14 had VACTERL features, and 2 had HPE with aventriculy. Specific craniofacial features were seen throughout the cohort, but were more common in patients with alopecia. We noted substantial overlap between groups. We conclude that although some distinct subgroups can be delineated, the overlapping features seen in our cohort suggest an underlying spectrum of RES-associated malformations rather than a collection of discrete syndromes.


Assuntos
Anormalidades Múltiplas/patologia , Alopecia/patologia , Doenças Cerebelares/patologia , Anormalidades Craniofaciais/patologia , Transtornos do Crescimento/patologia , Síndromes Neurocutâneas/patologia , Rombencéfalo/anormalidades , Rombencéfalo/patologia , Adolescente , Adulto , Canal Anal/anormalidades , Canal Anal/patologia , Cerebelo/anormalidades , Cerebelo/patologia , Criança , Pré-Escolar , Esôfago/anormalidades , Esôfago/patologia , Feminino , Cardiopatias Congênitas/patologia , Holoprosencefalia/patologia , Humanos , Lactente , Recém-Nascido , Rim/anormalidades , Rim/patologia , Deformidades Congênitas dos Membros/patologia , Masculino , Fenótipo , Coluna Vertebral/anormalidades , Coluna Vertebral/patologia , Traqueia/anormalidades , Traqueia/patologia , Adulto Jovem
14.
Cell ; 149(4): 912-22, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22559943

RESUMO

Gene duplication is an important source of phenotypic change and adaptive evolution. We leverage a haploid hydatidiform mole to identify highly identical sequences missing from the reference genome, confirming that the cortical development gene Slit-Robo Rho GTPase-activating protein 2 (SRGAP2) duplicated three times exclusively in humans. We show that the promoter and first nine exons of SRGAP2 duplicated from 1q32.1 (SRGAP2A) to 1q21.1 (SRGAP2B) ∼3.4 million years ago (mya). Two larger duplications later copied SRGAP2B to chromosome 1p12 (SRGAP2C) and to proximal 1q21.1 (SRGAP2D) ∼2.4 and ∼1 mya, respectively. Sequence and expression analyses show that SRGAP2C is the most likely duplicate to encode a functional protein and is among the most fixed human-specific duplicate genes. Our data suggest a mechanism where incomplete duplication created a novel gene function-antagonizing parental SRGAP2 function-immediately "at birth" 2-3 mya, which is a time corresponding to the transition from Australopithecus to Homo and the beginning of neocortex expansion.


Assuntos
Evolução Molecular , Proteínas Ativadoras de GTPase/genética , Primatas/genética , Duplicações Segmentares Genômicas , Animais , Variações do Número de Cópias de DNA , Feminino , Genética Médica , Humanos , Mola Hidatiforme/genética , Hibridização in Situ Fluorescente , Mamíferos/genética , Dados de Sequência Molecular , Gravidez
15.
Am J Hum Genet ; 90(3): 550-7, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22387015

RESUMO

Fibroblast growth factor receptor 2 (FGFR2) is a crucial regulator of bone formation during embryonic development. Both gain and loss-of-function studies in mice have shown that FGFR2 maintains a critical balance between the proliferation and differentiation of osteoprogenitor cells. We have identified de novo FGFR2 mutations in a sporadically occurring perinatal lethal skeletal dysplasia characterized by poor mineralization of the calvarium, craniosynostosis, dysmorphic facial features, prenatal teeth, hypoplastic pubis and clavicles, osteopenia, and bent long bones. Histological analysis of the long bones revealed that the growth plate contained smaller hypertrophic chondrocytes and a thickened hypercellular periosteum. Four unrelated affected individuals were found to be heterozygous for missense mutations that introduce a polar amino acid into the hydrophobic transmembrane domain of FGFR2. Using diseased chondrocytes and a cell-based assay, we determined that these mutations selectively reduced plasma-membrane levels of FGFR2 and markedly diminished the receptor's responsiveness to extracellular FGF. All together, these clinical and molecular findings are separate from previously characterized FGFR2 disorders and represent a distinct skeletal dysplasia.


Assuntos
Doenças do Desenvolvimento Ósseo/genética , Anormalidades Craniofaciais/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Sequência de Aminoácidos , Doenças do Desenvolvimento Ósseo/metabolismo , Osso e Ossos/anormalidades , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Condrócitos/metabolismo , Anormalidades Craniofaciais/metabolismo , Feto/anormalidades , Feto/metabolismo , Fatores de Crescimento de Fibroblastos/deficiência , Heterozigoto , Humanos , Dados de Sequência Molecular , Mutação , Mutação de Sentido Incorreto , Osteoblastos/metabolismo , Osteogênese/genética , Transdução de Sinais , Esqueleto
16.
Hum Mutat ; 31(10): 1142-54, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20672375

RESUMO

A range of phenotypes including Greig cephalopolysyndactyly and Pallister-Hall syndromes (GCPS, PHS) are caused by pathogenic mutation of the GLI3 gene. To characterize the clinical variability of GLI3 mutations, we present a subset of a cohort of 174 probands referred for GLI3 analysis. Eighty-one probands with typical GCPS or PHS were previously reported, and we report the remaining 93 probands here. This includes 19 probands (12 mutations) who fulfilled clinical criteria for GCPS or PHS, 48 probands (16 mutations) with features of GCPS or PHS but who did not meet the clinical criteria (sub-GCPS and sub-PHS), 21 probands (6 mutations) with features of PHS or GCPS and oral-facial-digital syndrome, and 5 probands (1 mutation) with nonsyndromic polydactyly. These data support previously identified genotype-phenotype correlations and demonstrate a more variable degree of severity than previously recognized. The finding of GLI3 mutations in patients with features of oral-facial-digital syndrome supports the observation that GLI3 interacts with cilia. We conclude that the phenotypic spectrum of GLI3 mutations is broader than that encompassed by the clinical diagnostic criteria, but the genotype-phenotype correlation persists. Individuals with features of either GCPS or PHS should be screened for mutations in GLI3 even if they do not fulfill clinical criteria.


Assuntos
Anormalidades Múltiplas/genética , Fatores de Transcrição Kruppel-Like/genética , Mutação , Proteínas do Tecido Nervoso/genética , Síndrome de Pallister-Hall/patologia , Polidactilia/patologia , Sindactilia/patologia , Anormalidades Craniofaciais/genética , Genótipo , Humanos , Anormalidades da Boca/genética , Síndrome de Pallister-Hall/genética , Fenótipo , Polidactilia/genética , Sindactilia/genética , Proteína Gli3 com Dedos de Zinco
17.
Am J Med Genet A ; 146A(23): 3038-53, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-19006208

RESUMO

Chondrodysplasia punctata (CDP) is etiologically a heterogeneous condition and has been associated with single gene disorders, chromosome abnormalities and teratogenic exposures. The first publication of the association between CDP and maternal autoimmune connective tissue disorder was by Curry et al. 1993]. Chondrodysplasia punctata associated with maternal collagen vascular disease. A new etiology? Presented at the David W. Smith Workshop on Morphogenesis and Malformations, Mont Tremblant, Quebec, August 1993] and subsequently, other cases have been reported. We report on eight cases of maternal collagen vascular disease associated with fetal CDP and included the cases reported by Curry et al. 1993. Chondrodysplasia punctata associated with maternal collagen vascular disease. A new etiology? Presented at the David W. Smith Workshop on Morphogenesis and Malformations, Mont Tremblant, Quebec, August 1993] and Costa et al. [1993]. Maternal systemic lupus erythematosis (SLE) and chondrodysplasia punctata in two infants. Coincidence or association? 1st Meeting of Bone Dysplasia Society, Chicago, June 1993] which were reported in an abstract form. We suggest that maternal autoimmune diseases should be part of the differential diagnosis and investigation in newborns/fetuses with CDP. Thus, in addition to cardiac evaluation, fetuses/newborn to mothers with autoimmune diseases should have fetal ultrasound/newborn examination and if indicated, X-rays, looking for absent/hypoplastic nasal bone, brachydactyly, shortened long bones and epiphyseal stippling.


Assuntos
Condrodisplasia Punctata/diagnóstico por imagem , Condrodisplasia Punctata/imunologia , Lúpus Eritematoso Sistêmico/complicações , Doença Mista do Tecido Conjuntivo/complicações , Complicações na Gravidez , Escleroderma Sistêmico/complicações , Adulto , Autoimunidade , Peso ao Nascer , Condrodisplasia Punctata/etiologia , Feminino , Humanos , Lactente , Gravidez , Radiografia , Adulto Jovem
18.
Am J Med Genet A ; 146A(13): 1637-54, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18536050

RESUMO

Polymicrogyria is a malformation of cortical development characterized by loss of the normal gyral pattern, which is replaced by many small and infolded gyri separated by shallow, partly fused sulci, and loss of middle cortical layers. The pathogenesis is unknown, yet emerging data supports the existence of several loci in the human genome. We report on the clinical and brain imaging features, and results of cytogenetic and molecular genetic studies in 29 patients with polymicrogyria associated with structural chromosome rearrangements. Our data map new polymicrogyria loci in chromosomes 1p36.3, 2p16.1-p23, 4q21.21-q22.1, 6q26-q27, and 21q21.3-q22.1, and possible loci in 1q44 and 18p as well. Most and possibly all of these loci demonstrate incomplete penetrance and variable expressivity. We anticipate that these data will serve as the basis for ongoing efforts to identify the causal genes located in these regions.


Assuntos
Aberrações Cromossômicas , Malformações do Desenvolvimento Cortical/genética , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Adolescente , Adulto , Aneuploidia , Encéfalo/patologia , Criança , Pré-Escolar , Quebra Cromossômica , Deleção Cromossômica , Cromossomos Artificiais Bacterianos/genética , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 2/genética , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Par 6/genética , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Cariotipagem , Masculino , Malformações do Desenvolvimento Cortical/patologia , Fenótipo , Translocação Genética
19.
Am J Med Genet A ; 143A(19): 2292-302, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17764081

RESUMO

We report on six cases from four families with the newly described skeletal disorder diaphanospondylodysostosis (DSD). The characteristic radiographic findings included abnormal ossification of vertebral bodies, posterior rib gaps, missing ribs, and a downward tilt of the pubic rami, but normal long bones. The typical facial features of DSD cases were ocular hypertelorism, a short nose, depressed nasal bridge, and low set ears. Other distinctive findings included a short neck with bell-shaped thorax, and nephroblastomatosis. A history of consanguinity and affected siblings with unaffected parents supports autosomal recessive inheritance. Skeletal histology showed incomplete ossification of the ribs, vertebral bodies, and sacrum as well as incomplete formation of intervertebral discs. The posterior ribs were comprised of bone with intervening cartilage interrupted by dense fibrous tissue and skeletal muscle fascicles. These findings suggest abnormal development and differentiation of the paraxial mesoderm. Because of phenotypic similarities of DSD to Pax1 and Meox1 deficient mice, we sequenced genomic DNA from three unrelated DSD cases. No mutations were identified in the PAX1 and MEOX1 exons or flanking intronic sequences, excluding them as likely causative genes.


Assuntos
Fatores de Transcrição Box Pareados/genética , Espondilólise/genética , Fatores de Transcrição/genética , Idoso de 80 Anos ou mais , Sequência de Bases , DNA/genética , Primers do DNA , Feminino , Proteínas de Homeodomínio , Humanos , Masculino , Reação em Cadeia da Polimerase , Espondilólise/fisiopatologia
20.
Am J Hum Genet ; 76(4): 609-22, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15739154

RESUMO

Mutations in the GLI3 zinc-finger transcription factor gene cause Greig cephalopolysyndactyly syndrome (GCPS) and Pallister-Hall syndrome (PHS), which are variable but distinct clinical entities. We hypothesized that GLI3 mutations that predict a truncated functional repressor protein cause PHS and that functional haploinsufficiency of GLI3 causes GCPS. To test these hypotheses, we screened patients with PHS and GCPS for GLI3 mutations. The patient group consisted of 135 individuals: 89 patients with GCPS and 46 patients with PHS. We detected 47 pathological mutations (among 60 probands); when these were combined with previously published mutations, two genotype-phenotype correlations were evident. First, GCPS was caused by many types of alterations, including translocations, large deletions, exonic deletions and duplications, small in-frame deletions, and missense, frameshift/nonsense, and splicing mutations. In contrast, PHS was caused only by frameshift/nonsense and splicing mutations. Second, among the frameshift/nonsense mutations, there was a clear genotype-phenotype correlation. Mutations in the first third of the gene (from open reading frame [ORF] nucleotides [nt] 1-1997) caused GCPS, and mutations in the second third of the gene (from ORF nt 1998-3481) caused primarily PHS. Surprisingly, there were 12 mutations in patients with GCPS in the 3' third of the gene (after ORF nt 3481), and no patients with PHS had mutations in this region. These results demonstrate a robust correlation of genotype and phenotype for GLI3 mutations and strongly support the hypothesis that these two allelic disorders have distinct modes of pathogenesis.


Assuntos
Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Proteínas de Ligação a DNA/genética , Mutação , Proteínas do Tecido Nervoso/genética , Polidactilia/genética , Fatores de Transcrição/genética , Epiglote/anormalidades , Hamartoma/genética , Humanos , Hipertelorismo/genética , Doenças Hipotalâmicas/genética , Fatores de Transcrição Kruppel-Like , Fenótipo , Sindactilia/genética , Síndrome , Proteína Gli3 com Dedos de Zinco , Dedos de Zinco/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA