Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686222

RESUMO

Liposomal formulations offer significant advantages as anticancer drug carriers for targeted drug delivery; however, due to their complexity, clinical translation has been challenging. In addition, liposomal product manufacturing has been interrupted in the past, as was the case for Doxil® (doxorubicin hydrochloride liposome injection). Here, interfacial tension (IFT) measurements were investigated as a potential physicochemical characterization tool to aid in liposomal product characterization during development and manufacturing. A pendant drop method using an optical tensiometer was used to measure the interfacial tension of various analogues of Doxil® liposomal suspensions in air and in dodecane. The effect of liposome concentration, formulation (PEG and cholesterol content), presence of encapsulated drug, as well as average particle size was analyzed. It was observed that Doxil® analog liposomes demonstrate surfactant-like behavior with a sigmoidal-shape interfacial tension vs. concentration curve. This behavior was heavily dependent on PEG content, with a complete loss of surfactant-like behavior when PEG was removed from the formulation. In addition to interfacial tension, three data analyses were identified as able to distinguish between formulations with variations in PEG, cholesterol, and particle size: (i) polar and non-polar contribution to interfacial tension, (ii) liposomal concentration at which the polar and non-polar components were equal, and (iii) rate of interfacial tension decay after droplet formation, which is indicative of how quickly liposomes migrate from the bulk of the solution to the surface. We demonstrate for the first time that interfacial tension can be used to detect certain liposomal formulation changes, such as PEG content, encapsulated drug presence, and size variability, and may make a useful addition to physicochemical characterization during development and manufacturing of liposomal products.


Assuntos
Nanopartículas , Neoplasias , Surfactantes Pulmonares , Humanos , Lipossomos , Propriedades de Superfície , Tensoativos
2.
Immunity ; 54(10): 2231-2244.e6, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34555337

RESUMO

RNA interference (RNAi) is the major antiviral mechanism in plants and invertebrates, but the absence of detectable viral (v)siRNAs in mammalian cells upon viral infection has questioned the functional relevance of this pathway in mammalian immunity. We designed a series of peptides specifically targeting enterovirus A71 (EV-A71)-encoded protein 3A, a viral suppressor of RNAi (VSR). These peptides abrogated the VSR function of EV-A71 in infected cells and resulted in the accumulation of vsiRNAs and reduced viral replication. These vsiRNAs were functional, as evidenced by RISC-loading and silencing of target RNAs. The effects of VSR-targeting peptides (VTPs) on infection with EV-A71 as well as another enterovirus, Coxsackievirus-A16, were ablated upon deletion of Dicer1 or AGO2, core components of the RNAi pathway. In vivo, VTP treatment protected mice against lethal EV-A71 challenge, with detectable vsiRNAs. Our findings provide evidence for the functional relevance of RNAi in mammalian immunity and present a therapeutic strategy for infectious disease.


Assuntos
Antivirais/farmacologia , Infecções por Enterovirus/virologia , RNA Viral/antagonistas & inibidores , Animais , Chlorocebus aethiops , Enterovirus Humano A , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Interferência de RNA , RNA Interferente Pequeno/antagonistas & inibidores , Células Vero , Replicação Viral/efeitos dos fármacos
3.
J Virol ; 92(5)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212943

RESUMO

Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug.IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity involved for this process to occur, which could be the basis for a novel antiviral control mechanism for FMDV.


Assuntos
Proteínas do Capsídeo/metabolismo , Vírus da Febre Aftosa/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Montagem de Vírus , Proteases Virais 3C , Animais , Benzoquinonas/farmacologia , Proteínas do Capsídeo/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Sistema Livre de Células , Cricetinae , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Febre Aftosa/metabolismo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/crescimento & desenvolvimento , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Isoxazóis/farmacologia , Lactamas Macrocíclicas/farmacologia , Precursores de Proteínas/efeitos dos fármacos , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , RNA Viral/genética , RNA Viral/metabolismo , Resorcinóis/farmacologia , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/genética , Proteínas Virais/metabolismo , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Replicação Viral
4.
PeerJ ; 4: e1964, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27168976

RESUMO

The replication of foot-and-mouth disease virus (FMDV) is dependent on the virus-encoded 3C protease (3C(pro)). As in other picornaviruses, 3C(pro) performs most of the proteolytic processing of the polyprotein expressed from the large open reading frame in the RNA genome of the virus. Previous work revealed that the 3C(pro) from serotype A-one of the seven serotypes of FMDV-adopts a trypsin-like fold. On the basis of capsid sequence comparisons the FMDV serotypes are grouped into two phylogenetic clusters, with O, A, C, and Asia 1 in one, and the three Southern African Territories serotypes, (SAT-1, SAT-2 and SAT-3) in another, a grouping pattern that is broadly, but not rigidly, reflected in 3C(pro) amino acid sequences. We report here the cloning, expression and purification of 3C proteases from four SAT serotype viruses (SAT2/GHA/8/91, SAT1/NIG/5/81, SAT1/UGA/1/97, and SAT2/ZIM/7/83) and the crystal structure at 3.2 Å resolution of 3C(pro) from SAT2/GHA/8/91.

5.
PeerJ ; 3: e798, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25755927

RESUMO

Noroviruses are positive-sense single-stranded RNA viruses. They encode an NS6 protease that cleaves a viral polyprotein at specific sites to produce mature viral proteins. In an earlier study we obtained crystals of murine norovirus (MNV) NS6 protease in which crystal contacts were mediated by specific insertion of the C-terminus of one protein (which contains residues P5-P1 of the NS6-7 cleavage junction) into the peptide binding site of an adjacent molecule, forming an adventitious protease-product complex. We sought to reproduce this crystal form to investigate protease-substrate complexes by extending the C-terminus of NS6 construct to include residues on the C-terminal (P') side of the cleavage junction. We report the crystallization and crystal structure determination of inactive mutants of murine norovirus NS6 protease with C-terminal extensions of one, two and four residues from the N-terminus of the adjacent NS7 protein (NS6 1', NS6 2', NS6 4'). We also determined the structure of a chimeric extended NS6 protease in which the P4-P4' sequence of the NS6-7 cleavage site was replaced with the corresponding sequence from the NS2-3 cleavage junction (NS6 4' 2|3).The constructs NS6 1' and NS6 2' yielded crystals that diffracted anisotropically. We found that, although the uncorrected data could be phased by molecular replacement, refinement of the structures stalled unless the data were ellipsoidally truncated and corrected with anisotropic B-factors. These corrections significantly improved phasing by molecular replacement and subsequent refinement.The refined structures of all four extended NS6 proteases are very similar in structure to the mature MNV NS6-and in one case reveal additional details of a surface loop. Although the packing arrangement observed showed some similarities to those observed in the adventitious protease-product crystals reported previously, in no case were specific protease-substrate interactions observed.

6.
Nucleic Acids Res ; 42(13): 8605-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24957602

RESUMO

Post-transcriptional steps of gene expression are regulated by RNA binding proteins. Major progress has been made in characterizing RNA-protein interactions, from high resolution structures to transcriptome-wide profiling. Due to the inherent technical challenges, less attention has been paid to the way in which proteins with multiple RNA binding domains engage with target RNAs. We have investigated how the four RNA recognition motif (RRM) domains of Polypyrimidine tract binding (PTB) protein, a major splicing regulator, interact with FAS pre-mRNA under conditions in which PTB represses FAS exon 6 splicing. A combination of tethered hydroxyl radical probing, targeted inactivation of individual RRMs and single molecule analyses revealed an unequal division of labour between the four RRMs of PTB. RNA binding by RRM4 is the most important for function despite the low intrinsic binding specificity and the complete lack of effect of disrupting individual RRM4 contact points on the RNA. The ordered RRM3-4 di-domain packing provides an extended binding surface for RNA interacting at RRM4, via basic residues in the preceding linker. Our results illustrate how multiple alternative low-specificity binding configurations of RRM4 are consistent with repressor function as long as the overall ribonucleoprotein architecture provided by appropriate di-domain packing is maintained.


Assuntos
Processamento Alternativo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Receptor fas/genética , Sítios de Ligação , Mutação , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Precursores de RNA/química , RNA Mensageiro/química , Receptor fas/metabolismo
7.
PeerJ ; 2: e305, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24688880

RESUMO

The eukaryotic polypyrimidine tract binding protein (PTB) serves primarily as a regulator of alternative splicing of messenger RNA, but is also co-opted to other roles such as RNA localisation and translation initiation from internal ribosome entry sites. The neuronal paralogue of PTB (nPTB) is 75% identical in amino acid sequence with PTB. Although the two proteins have broadly similar RNA binding specificities and effects on RNA splicing, differential expression of PTB and nPTB can lead to the generation of alternatively spliced mRNAs. RNA binding by PTB and nPTB is mediated by four RNA recognition motifs (RRMs). We present here the crystal and solution structures of the C-terminal domain of nPTB (nPTB34) which contains RRMs 3 and 4. As expected the structures are similar to each other and to the solution structure of the equivalent fragment from PTB (PTB34). The result confirms that, as found for PTB, RRMs 3 and 4 of nPTB interact with one another to form a stable unit that presents the RNA-binding surfaces of the component RRMs on opposite sides that face away from each other. The major differences between PTB34 and nPTB34 arise from amino acid side chain substitutions on the exposed ß-sheet surfaces and adjoining loops of each RRM, which are likely to modulate interactions with RNA.

8.
Bioorg Med Chem Lett ; 24(2): 490-4, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24374278

RESUMO

Foot-and-mouth disease virus (FMDV) causes a highly infectious and economically devastating disease of livestock. The FMDV genome is translated as a single polypeptide precursor that is cleaved into functional proteins predominantly by the highly conserved viral 3C protease, making this enzyme an attractive target for antiviral drugs. A peptide corresponding to an optimal substrate has been modified at the C-terminus, by the addition of a warhead, to produce irreversible inhibitors that react as Michael acceptors with the enzyme active site. Further investigation highlighted key structural determinants for inhibition, with a positively charged P2 being particularly important for potency.


Assuntos
Antivirais/síntese química , Antivirais/farmacologia , Cisteína Endopeptidases/química , Desenho de Fármacos , Vírus da Febre Aftosa/efeitos dos fármacos , Vírus da Febre Aftosa/enzimologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/química , Proteases Virais 3C , Animais , Cisteína Endopeptidases/metabolismo , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Virais/metabolismo
9.
J Virol ; 87(21): 11721-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23986596

RESUMO

Picornavirus infection can cause Golgi fragmentation and impose a block in the secretory pathway which reduces expression of major histocompatibility antigens at the plasma membrane and slows secretion of proinflammatory cytokines. In this study, we show that Golgi fragmentation and a block in secretion are induced by expression of foot-and-mouth disease virus (FMDV) 3C(pro) and that this requires the protease activity of 3C(pro). 3C(pro) caused fragmentation of early, medial, and late Golgi compartments, but the most marked effect was on early Golgi compartments, indicated by redistribution of ERGIC53 and membrin. Golgi fragments were dispersed in the cytoplasm and were able to receive a model membrane protein exported from the endoplasmic reticulum (ER). Golgi fragments were, however, unable to transfer the protein to the plasma membrane, indicating a block in intra-Golgi transport. Golgi fragmentation was coincident with a loss of microtubule organization resulting from an inhibition of microtubule regrowth from the centrosome. Inhibition of microtubule regrowth also required 3C(pro) protease activity. The loss of microtubule organization induced by 3C(pro) caused Golgi fragmentation, but loss of microtubule organization does not block intra-Golgi transport. It is likely that the block of intra-Golgi transport is imposed by separate actions of 3C(pro), possibly through degradation of proteins required for intra-Golgi transport.


Assuntos
Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/patogenicidade , Complexo de Golgi/metabolismo , Complexo de Golgi/fisiologia , Interações Hospedeiro-Patógeno , Proteínas Virais/metabolismo , Proteases Virais 3C , Animais , Chlorocebus aethiops , Complexo de Golgi/ultraestrutura , Microscopia de Fluorescência , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Transporte Proteico , Células Vero
10.
J Virol Methods ; 187(2): 406-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23174161

RESUMO

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.


Assuntos
Biotecnologia/métodos , Capsídeo/imunologia , Cisteína Endopeptidases/biossíntese , Vírus da Febre Aftosa/isolamento & purificação , Expressão Gênica , Tecnologia Farmacêutica/métodos , Proteínas Virais/biossíntese , Vacinas Virais/isolamento & purificação , Proteases Virais 3C , Animais , Linhagem Celular , Cisteína Endopeptidases/genética , Regulação para Baixo , Vírus da Febre Aftosa/genética , Vírus da Febre Aftosa/imunologia , Insetos , Proteínas Virais/genética , Vacinas Virais/genética , Vacinas Virais/imunologia
11.
Biochem Soc Trans ; 40(4): 815-20, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22817740

RESUMO

PTB (polypyrimidine tract-binding protein) is an abundant and widely expressed RNA-binding protein with four RRM (RNA recognition motif) domains. PTB is involved in numerous post-transcriptional steps in gene expression in both the nucleus and cytoplasm, but has been best characterized as a regulatory repressor of some ASEs (alternative splicing events), and as an activator of translation driven by IRESs (internal ribosome entry segments). We have used a variety of approaches to characterize the activities of PTB and its molecular interactions with RNA substrates and protein partners. Using splice-sensitive microarrays we found that PTB acts not only as a splicing repressor but also as an activator, and that these two activities are determined by the location at which PTB binds relative to target exons. We have identified minimal splicing repressor and activator domains, and have determined high resolution structures of the second RRM domain of PTB binding to peptide motifs from the co-repressor protein Raver1. Using single-molecule techniques we have determined the stoichiometry of PTB binding to a regulated splicing substrate in whole nuclear extracts. Finally, we have used tethered hydroxyl radical probing to determine the locations on viral IRESs at which each of the four RRM domains bind. We are now combining tethered probing with single molecule analyses to gain a detailed understanding of how PTB interacts with pre-mRNA substrates to effect either repression or activation of splicing.


Assuntos
Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Processamento Alternativo/genética , Animais , Éxons/genética , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
12.
PLoS One ; 7(6): e38723, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22685603

RESUMO

Murine noroviruses have emerged as a valuable tool for investigating the molecular basis of infection and pathogenesis of the closely related human noroviruses, which are the major cause of non-bacterial gastroenteritis. The replication of noroviruses relies on the proteolytic processing of a large polyprotein precursor into six non-structural proteins (NS1-2, NS3, NS4, NS5, NS6(pro), NS7(pol)) by the virally-encoded NS6 protease. We report here the crystal structure of MNV NS6(pro), which has been determined to a resolution of 1.6 Å. Adventitiously, the crystal contacts are mediated in part by the binding of the C-terminus of NS6(pro) within the peptide-binding cleft of a neighbouring molecule. This insertion occurs for both molecules in the asymmetric unit of the crystal in a manner that is consistent with physiologically-relevant binding, thereby providing two independent views of a protease-peptide complex. Since the NS6(pro) C-terminus is formed in vivo by NS6(pro) processing, these crystal contacts replicate the protease-product complex that is formed immediately following cleavage of the peptide bond at the NS6-NS7 junction. The observed mode of binding of the C-terminal product peptide yields new insights into the structural basis of NS6(pro) specificity.


Assuntos
Norovirus/enzimologia , Peptídeo Hidrolases/química , Estrutura Terciária de Proteína , Proteínas não Estruturais Virais/química , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Mutação , Norovirus/genética , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
13.
Structure ; 19(12): 1816-25, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22153504

RESUMO

The polypyrimidine tract-binding protein (PTB) is an important regulator of alternative splicing. PTB-regulated splicing of α-tropomyosin is enhanced by Raver1, a protein with four PTB-Raver1 interacting motifs (PRIs) that bind to the helical face of the second RNA recognition motif (RRM2) in PTB. We present the crystal structures of RRM2 in complex with PRI3 and PRI4 from Raver1, which--along with structure-based mutagenesis--reveal the molecular basis of their differential binding. High-affinity binding by Raver1 PRI3 involves shape-matched apolar contacts complemented by specific hydrogen bonds, a new variant of an established mode of peptide-RRM interaction. Our results refine the sequence of the PRI motif and place important structural constraints on functional models of PTB-Raver1 interactions. Our analysis indicates that the observed Raver1-PTB interaction is a general mode of binding that applies to Raver1 complexes with PTB paralogues such as nPTB and to complexes of Raver2 with PTB.


Assuntos
Processamento Alternativo , Proteínas de Transporte/química , Proteínas Nucleares/química , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Células HeLa , Humanos , Ligação de Hidrogênio , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA/química , RNA/metabolismo , Ribonucleoproteínas , Transfecção
14.
RNA ; 17(6): 1120-31, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21518806

RESUMO

Polypyrimidine tract binding protein (PTB) is an RNA-binding protein with four RNA-binding domains (RBDs). It is a major regulator of alternative splicing and also stimulates translation initiation at picornavirus IRESs (internal ribosome entry sites). The sites of interaction of each RBD with two picornaviral IRESs have previously been mapped. To establish which RBD-IRES interactions are essential for IRES activation, point mutations were introduced into the RNA-binding surface of each RBD. Three such mutations were sufficient to inactivate RNA-binding by any one RBD, but the sites of the other three RBD-IRES interactions remained unperturbed. Poliovirus IRES activation was abrogated by inactivation of RBD1, 2, or 4, but the RBD3-IRES interaction was superfluous. Stimulation of the encephalomyocarditis virus IRES was reduced by inactivation of RBD1, 3, or 4, and abrogated by mutation of RBD2, or both RBDs 3 and 4. Surprisingly, therefore, the binding of PTB in its normal orientation does not guarantee IRES activation; three native RBDs are sufficient for correct binding but not for activation if the missing RBD-IRES interaction is critical.


Assuntos
Picornaviridae/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Biossíntese de Proteínas , RNA Viral/química , RNA Viral/metabolismo , Sítios de Ligação , Vírus da Encefalomiocardite/genética , Vírus da Encefalomiocardite/metabolismo , Conformação de Ácido Nucleico , Picornaviridae/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/química , Estrutura Terciária de Proteína , Ribossomos/genética , Ribossomos/metabolismo
15.
J Biol Chem ; 285(32): 24347-59, 2010 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-20507978

RESUMO

Foot-and-mouth disease virus (FMDV), a positive sense, single-stranded RNA virus, causes a highly contagious disease in cloven-hoofed livestock. Like other picornaviruses, FMDV has a conserved 2C protein assigned to the superfamily 3 helicases a group of AAA+ ATPases that has a predicted N-terminal membrane-binding amphipathic helix attached to the main ATPase domain. In infected cells, 2C is involved in the formation of membrane vesicles, where it co-localizes with viral RNA replication complexes, but its precise role in virus replication has not been elucidated. We show here that deletion of the predicted N-terminal amphipathic helix enables overexpression in Escherichia coli of a highly soluble truncated protein, 2C(34-318), that has ATPase and RNA binding activity. ATPase activity was abrogated by point mutations in the Walker A (K116A) and B (D160A) motifs and Motif C (N207A) in the active site. Unliganded 2C(34-318) exhibits concentration-dependent self-association to yield oligomeric forms, the largest of which is tetrameric. Strikingly, in the presence of ATP and RNA, FMDV 2C(34-318) containing the N207A mutation, which binds but does not hydrolyze ATP, was found to oligomerize specifically into hexamers. Visualization of FMDV 2C-ATP-RNA complexes by negative stain electron microscopy revealed hexameric ring structures with 6-fold symmetry that are characteristic of AAA+ ATPases. ATPase assays performed by mixing purified active and inactive 2C(34-318) subunits revealed a coordinated mechanism of ATP hydrolysis. Our results provide new insights into the structure and mechanism of picornavirus 2C proteins that will facilitate new investigations of their roles in infection.


Assuntos
Trifosfato de Adenosina/química , Proteínas de Transporte/química , Proteínas de Transporte/fisiologia , Vírus da Febre Aftosa/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/fisiologia , Motivos de Aminoácidos , Domínio Catalítico , Escherichia coli/metabolismo , Hidrólise , Cinética , Modelos Biológicos , Mutação , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , RNA Viral/metabolismo , Proteínas Virais/química
16.
Arch Virol ; 155(5): 723-31, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20333533

RESUMO

Several reports have previously shown that expression of the foot-and-mouth disease virus (FMDV) capsid precursor protein encoding region P1-2A together with the 3C protease (P1-2A/3C) results in correct processing of the capsid precursor into VP0, VP1 and VP3 and formation of FMDV capsid structures that are able to induce a protective immune response against FMDV challenge after immunization using naked DNA constructs or recombinant viruses. To elucidate whether bovine herpesvirus 1 (BHV-1) might also be suitable as a viral vector for empty capsid generation, we aimed to integrate a P1-2A/3C expression cassette into the BHV-1 genome, which, however, failed repeatedly. In contrast, BHV-1 recombinants that expressed an inactive 3C protease or the P1-2A polyprotein alone could be easily generated, although the recombinant that expressed P1-2A exhibited a defect in direct cell-cell spread and release of infectious particles. These results suggested that expression of the original, active FMDV 3C protease is not compatible with BHV-1 replication. This conclusion is supported by the isolation of recombinant BHV-1/3C*, which contained mutations within the 3C ORF (3C* ORF)--probably introduced spontaneously during generation of BHV-1/3C*--instead of the authentic 3C ORF contained in the transfer plasmids. Within the 3C* ORF, the codons for glycine 38 and phenylalanine 48 were both substituted by codons for serine. The resulting 3C* protease exhibits a highly reduced activity for proteolytic processing of the P1-2A polyprotein and thus might be a good candidate for the generation of live attenuated FMDV variants.


Assuntos
Proteínas do Capsídeo/biossíntese , Cisteína Endopeptidases/fisiologia , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/fisiologia , Precursores de Proteínas/fisiologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Virais/fisiologia , Replicação Viral , Proteases Virais 3C , Animais , Sequência de Bases , Células COS , Bovinos , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Cisteína Endopeptidases/genética , Vetores Genéticos , Dados de Sequência Molecular , Precursores de Proteínas/genética , Proteínas Virais/genética
17.
J Mol Biol ; 395(2): 375-89, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19883658

RESUMO

Picornavirus replication is critically dependent on the correct processing of a polyprotein precursor by 3C protease(s) (3C(pro)) at multiple specific sites with related but non-identical sequences. To investigate the structural basis of its cleavage specificity, we performed the first crystallographic structural analysis of non-covalent complexes of a picornavirus 3C(pro) with peptide substrates. The X-ray crystal structure of the foot-and-mouth disease virus 3C(pro), mutated to replace the catalytic Cys by Ala and bound to a peptide (APAKQ|LLNFD) corresponding to the P5-P5' region of the VP1-2A cleavage junction in the viral polyprotein, was determined up to 2.5 A resolution. Comparison with free enzyme reveals significant conformational changes in 3C(pro) on substrate binding that lead to the formation of an extended interface of contact primarily involving the P4-P2' positions of the peptide. Strikingly, the deep S1' specificity pocket needed to accommodate P1'-Leu only forms when the peptide binds. Substrate specificity was investigated using peptide cleavage assays to show the impact of amino acid substitutions within the P5-P4' region of synthetic substrates. The structure of the enzyme-peptide complex explains the marked substrate preferences for particular P4, P2 and P1 residue types, as well as the relative promiscuity at P3 and on the P' side of the scissile bond. Furthermore, crystallographic analysis of the complex with a modified VP1-2A peptide (APAKE|LLNFD) containing a Gln-to-Glu substitution reveals an identical mode of peptide binding and explains the ability of foot-and-mouth disease virus 3C(pro) to cleave sequences containing either P1-Gln or P1-Glu. Structure-based mutagenesis was used to probe interactions within the S1' specificity pocket and to provide direct evidence of the important contribution made by Asp84 of the Cys-His-Asp catalytic triad to proteolytic activity. Our results provide a new level of detail in our understanding of the structural basis of polyprotein cleavage by 3C(pro).


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/enzimologia , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteases Virais 3C , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Domínio Catalítico/genética , Cristalografia por Raios X , Cisteína Endopeptidases/genética , DNA Viral/genética , Vírus da Febre Aftosa/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Proteínas Virais/genética , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética
18.
Org Biomol Chem ; 7(18): 3836-41, 2009 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-19707690

RESUMO

Complexation of iron(II) protoporphyrin IX (Fe(2+)PP) into a genetically engineered heme pocket on recombinant human serum albumin (rHSA) creates an artificial hemoprotein which can bind O(2) reversibly at room temperature. Here we highlight a crucial role of a basic amino acid triad the entrance of the heme pocket in rHSA (Arg-114, His-146, Lys-190) for O(2) and CO binding to the prosthetic Fe(2+)PP group. Replacing His-146 and/or Lys-190 with Arg resolved the structured heterogeneity of the possible two complexing modes of the porphyrin and afforded a single O(2) and CO binding affinity. Resonance Raman spectra show only one geometry of the axial His coordination to the central ferrous ion of the Fe(2+)PP.


Assuntos
Aminoácidos/metabolismo , Monóxido de Carbono/metabolismo , Heme/química , Oxigênio/metabolismo , Protoporfirinas/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Deutério/química , Eritrócitos/metabolismo , Heme/metabolismo , Humanos , Modelos Moleculares , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrofotometria Infravermelho , Análise Espectral Raman
19.
Mol Cell ; 34(5): 556-68, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524536

RESUMO

Polypyrimidine tract binding (PTB) protein is a regulator of alternative pre-mRNA splicing, and also stimulates the initiation of translation dependent on many viral internal ribosome entry segments/sites (IRESs). It has four RNA-binding domains (RBDs), but although the contacts with many IRESs have been mapped, the orientation of binding (i.e., which RBD binds to which site in the IRES) is unknown. To answer this question, 16 derivatives of PTB1, each with a single cysteine flanking the RNA-binding surface in an RBD, were constructed and used in directed hydroxyl radical probing with the encephalomyocarditis virus IRES. The results, together with mass spectrometry data on the stoichiometry of PTB binding to different IRES derivatives, show that the minimal IRES binds a single PTB in a unique orientation, with RBD1 and RBD2 binding near the 3' end, and RBD3 contacting the 5' end, thereby constraining and stabilizing the three-dimensional structural fold of the IRES.


Assuntos
Vírus da Encefalomiocardite/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/fisiologia , RNA Viral/química , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Biossíntese de Proteínas/fisiologia , RNA Viral/metabolismo , Alinhamento de Sequência
20.
Vet Surg ; 37(2): 132-41, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18251806

RESUMO

OBJECTIVE: To assess lameness evaluation, shoulder abduction angles, radiography, and ultrasonography for determining presence, location, and severity of forelimb pathology. STUDY DESIGN: Prospective cohort study. ANIMALS: Dogs >or=20 kg (n=30). METHODS: Each dog was assigned lameness scores. Shoulder abduction angles were determined. Radiographs of shoulders and elbows were subjectively graded for pathology. One investigator unaware of dog history (lameness, radiographic findings) performed ultrasonographic assessment of shoulders with subjective grading of pathology. Another investigator unaware of dog history (lameness, radiographic, ultrasonographic findings) performed arthroscopic assessment of shoulders with subjective grading of pathology. Elbows were disarticulated and evaluated for gross pathology. Histologic pathology scoring of shoulder tissues was performed. Data were compared for differences among groups, sensitivities, specificities, positive and negative predictive values, and positive and negative likelihood ratios were calculated. RESULTS: Twenty-seven forelimbs were considered clinically normal, 26 had shoulder pathology, 5 had elbow pathology, and 2 had pathology of both the shoulder and elbow. Dogs with shoulder pathology were twice as likely to be lame compared with dogs with elbow pathology. Limbs with medial shoulder instability had significantly higher abduction angles than normal limbs and those with elbow pathology. Radiographs were clinically useful for diagnosing elbow, but not shoulder, pathology. Ultrasonography was clinically useful for diagnosing shoulder pathology other than instability. Abduction angles, ultrasonographic evaluation, and arthroscopic assessments had strong, significant correlations with reference standards. CONCLUSIONS: Clinically relevant diagnostic techniques yielded characteristic, repeatable differences in objective and subjective assessments for distinguishing presence, location, and severity of forelimb lameness in dogs. CLINICAL RELEVANCE: The diagnostic approach to forelimb lameness in dogs should include shoulder pathology as a differential with multiple assessments used to determine the clinical cause of lameness.


Assuntos
Doenças do Cão/diagnóstico , Instabilidade Articular/veterinária , Amplitude de Movimento Articular , Articulação do Ombro , Animais , Doenças do Cão/diagnóstico por imagem , Doenças do Cão/patologia , Cães , Feminino , Instabilidade Articular/diagnóstico , Coxeadura Animal , Masculino , Variações Dependentes do Observador , Linhagem , Valor Preditivo dos Testes , Estudos Prospectivos , Radiografia , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA