Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Res ; 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39018356

RESUMO

Frequent (>70%) TP53 mutations often promote its protein stabilization, driving esophageal adenocarcinoma (EAC) development linked to poor survival and therapy resistance. We previously reported that during Barrett's (BE) progression to EAC, an isoform switch occurs in the E3 ubiquitin ligase RNF128 (aka GRAIL - gene related to anergy in lymphocytes), enriching isoform 1 (hereby GRAIL1) and, stabilizing the mutant p53 protein. Consequently, GRAIL1 knockdown degrades mutant p53. But how GRAIL1 stabilizes the mutant p53 protein remains unclear. In search for a mechanism, here we performed biochemical and cell biology studies to identify that GRAIL has a binding domain (315-PMCKCDILKA-325) for Hsp40/DNAJ. This interaction can influence DNAJ chaperone activity to modulate misfolded mutant p53 stability. As predicted, either the overexpression of a GRAIL fragment (Frag-J) encompassing the DNAJ binding domain, or a cell permeable peptide (Pep-J) encoding the above 10 amino acids, can bind and inhibit DNAJ-Hsp70 co-chaperone activity thus degrading misfolded mutant p53. Consequently, either Frag-J or Pep-J can reduce the survival of mutant p53 containing dysplastic BE and EAC cells and inhibit growth of patient-derived dysplastic BE organoids (PDOs) in 3D cultures. The misfolded mutant p53 targeting and growth inhibitory effects of Pep-J is comparable to simvastatin, a cholesterol lowering drug, that can degrade misfolded mutant p53 also via inhibiting DNAJA1, although by a distinct mechanism. Implications: We identified a novel ubiquitin ligase independent, chaperone regulating domain in GRAIL and further synthesized a first-in-class novel misfolded mutant p53 degrading peptide having future translational potential.

2.
Cancer Res Commun ; 4(7): 1655-1666, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38888911

RESUMO

Obesity is a modifiable predisposition factor for postmenopausal breast cancer. This suggests a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of 10 human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells. The screen identified an adipogenic modulator, zinc-alpha-2-glycoprotein (ZAG/AZGP1) that is secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG is linked to poor prognosis in patients with TNBC but not in patients with other clinical subtypes of breast cancer. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of adipocyte stem and progenitor cells into cancer-associated fibroblasts to support tumorigenesis. SIGNIFICANCE: Functional screening of breast cancer secretomes revealed that triple-negative breast cancer promotes fibrosis in the adipose tissue microenvironment by secreting zinc-alpha-2-glycoprotein and promoting the transdifferentiation of adipocyte stem cells into myofibroblasts.


Assuntos
Fibrose , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Feminino , Camundongos , Fibrose/metabolismo , Fibrose/patologia , Animais , Linhagem Celular Tumoral , Adipogenia , Adipócitos/metabolismo , Adipócitos/patologia , Glicoproteína Zn-alfa-2 , Microambiente Tumoral , Proteínas de Plasma Seminal/metabolismo , Proteínas de Plasma Seminal/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia
3.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496643

RESUMO

Obesity is a predisposition factor for breast cancer, suggesting a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of ten human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells (ASPC). The screen identified a key adipogenic modulator, Zinc Alpha-2-Glycoprotein (ZAG/AZGP1), secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG in TNBC patients, but not other clinical subtypes of breast cancer, is linked to poor prognosis. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of ASPCs into cancer-associated fibroblasts to support tumorigenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA