Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(40): e202309466, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37582227

RESUMO

LGa(P2 OC)cAAC 2 features a 1,2-diphospha-1,3-butadiene unit with a delocalized π-type HOMO and a π*-type LUMO according to DFT calculations. [LGa(P2 OC)cAAC][K(DB-18-c-6)] 3[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene radical anion 3⋅- was isolated from the reaction of 2 with KC8 and dibenzo-18-crown-6. 3 reacted with [Fc][B(C6 F5 )4 ] (Fc=ferrocenium) to 2 and with TEMPO to [L-H Ga(P2 OC)cAAC][K(DB-18-c-6)] 4[K(DB-18-c-6] containing the 1,2-diphospha-1,3-butadiene anion 4- . The solid state structures of 2, 3K(DB-18-c-6], and 4[K(DB-18-c-6] were determined by single crystal X-ray diffraction (sc-XRD).

2.
J Biol Inorg Chem ; 27(6): 573-582, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35988092

RESUMO

Soluble methane monooxygenase (sMMO) facilitates the conversion of methane to methanol at a non-heme FeIV2 intermediate MMOHQ, which is formed in the active site of the sMMO hydroxylase component (MMOH) during the catalytic cycle. Other biological systems also employ high-valent FeIV sites in catalysis; however, MMOHQ is unique as Nature's only identified FeIV2 intermediate. Previous 57Fe Mössbauer spectroscopic studies have shown that MMOHQ employs antiferromagnetic coupling of the two FeIV sites to yield a diamagnetic cluster. Unfortunately, this lack of net spin prevents the determination of the local spin state (Sloc) of each of the irons by most spectroscopic techniques. Here, we use Fe Kß X-ray emission spectroscopy (XES) to characterize the local spin states of the key intermediates of the sMMO catalytic cycle, including MMOHQ trapped by rapid-freeze-quench techniques. A pure XES spectrum of MMOHQ is obtained by subtraction of the contributions from other reaction cycle intermediates with the aid of Mössbauer quantification. Comparisons of the MMOHQ spectrum with those of known Sloc = 1 and Sloc = 2 FeIV sites in chemical and biological models reveal that MMOHQ possesses Sloc = 2 iron sites. This experimental determination of the local spin state will help guide future computational and mechanistic studies of sMMO catalysis.


Assuntos
Ferro , Oxigenases , Ferro/química , Oxirredução , Oxigenases/metabolismo , Espectrometria por Raios X
3.
ChemElectroChem ; 9(3): e202101271, 2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35874044

RESUMO

In this study, we combine in situ spectroelectrochemistry coupled with electron paramagnetic resonance (EPR) and X-ray absorption spectroscopies (XAS) to investigate a molecular Ru-based water oxidation catalyst bearing a polypyridinic backbone [RuII(OH2)(Py2Metacn)]2+ . Although high valent key intermediate species arising in catalytic cycles of this family of compounds have remain elusive due to the lack of additional anionic ligands that could potentially stabilize them, mechanistic studies performed on this system proposed a water nucleophilic attack (WNA) mechanism for the O-O bond formation. Employing in situ experimental conditions and complementary spectroscopic techniques allowed to observe intermediates that provide support for a WNA mechanism, including for the first time a Ru(V) oxo intermediate based on the Py2Metacn ligand, in agreement with the previously proposed mechanism.

4.
J Biol Inorg Chem ; 26(1): 93-108, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33544225

RESUMO

The Schizosaccharomyces pombe Asp1 protein is a bifunctional kinase/pyrophosphatase that belongs to the highly conserved eukaryotic diphosphoinositol pentakisphosphate kinase PPIP5K/Vip1 family. The N-terminal Asp1 kinase domain generates specific high-energy inositol pyrophosphate (IPP) molecules, which are hydrolyzed by the C-terminal Asp1 pyrophosphatase domain (Asp1365-920). Thus, Asp1 activities regulate the intracellular level of a specific class of IPP molecules, which control a wide number of biological processes ranging from cell morphogenesis to chromosome transmission. Recently, it was shown that chemical reconstitution of Asp1371-920 leads to the formation of a [2Fe-2S] cluster; however, the biological relevance of the cofactor remained under debate. In this study, we provide evidence for the presence of the Fe-S cluster in Asp1365-920 inside the cell. However, we show that the Fe-S cluster does not influence Asp1 pyrophosphatase activity in vitro or in vivo. Characterization of the as-isolated protein by electronic absorption spectroscopy, mass spectrometry, and X-ray absorption spectroscopy is consistent with the presence of a [2Fe-2S]2+ cluster in the enzyme. Furthermore, we have identified the cysteine ligands of the cluster. Overall, our work reveals that Asp1 contains an Fe-S cluster in vivo that is not involved in its pyrophosphatase activity.


Assuntos
Proteínas do Citoesqueleto/química , Proteínas Ferro-Enxofre/química , Pirofosfatases/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/enzimologia , Biocatálise , Cisteína/química , Proteínas do Citoesqueleto/genética , Proteínas Ferro-Enxofre/genética , Enzimas Multifuncionais/química , Enzimas Multifuncionais/genética , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Pirofosfatases/genética , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/genética
5.
J Inorg Biochem ; 203: 110877, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710865

RESUMO

Ferritin-like carboxylate-bridged non-heme diiron enzymes activate O2 for a variety of difficult reactions throughout nature. These reactions often begin by abstraction of hydrogen from strong CH bonds. The enzymes activate O2 at their diferrous cofactors to form canonical diferric peroxo intermediates, with a range of possible coordination modes. Herein, we explore the ability of high-energy resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) to provide insight into the nature of peroxo level intermediates in non-heme diiron proteins. Freeze quenched (FQ) peroxo intermediates from p-aminobenzoate N-oxygenase (AurF), aldehyde-deformylating oxygenase (ADO), and the ß subunit of class Ia ribonucleotide reductase from Escherichia coli (Ecß) are investigated. All three intermediates are proposed to adopt different peroxo binding modes, and each exhibit different Fe Kα HERFD XAS pre-edge features and intensities. As these FQ-trapped samples consist of multiple species, deconvolution of HERFD XAS spectra based on speciation, as determined by Mössbauer spectroscopy, is also necessitated - yielding 'pure' diferric peroxo HERFD XAS spectra from dilute protein samples. Finally, the impact of a given peroxo coordination mode on the HERFD XAS pre-edge energy and intensity is evaluated through time-dependent density functional theory (TDDFT) calculations of the XAS spectra on a series of hypothetical model complexes, which span a full range of possible peroxo coordination modes to a diferric core. The utility of HERFD XAS for future studies of enzymatic intermediates is discussed.


Assuntos
Proteínas de Bactérias/química , Ferro/química , Oxigenases/química , Peróxidos/química , Ribonucleotídeo Redutases/química , Teoria da Densidade Funcional , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Modelos Químicos , Oxirredução , Oxigênio/química , Espectroscopia por Absorção de Raios X
6.
Inorg Chem ; 58(19): 12918-12932, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31553598

RESUMO

The present study employs a suite of spectroscopic techniques to evaluate the electronic and bonding characteristics of the interstitial carbide in a set of iron-carbonyl-carbide clusters, one of which is substituted with a molybdenum atom. The M6C and M5C clusters are the dianions (Et4N)2[Fe6(µ6-C)(µ2-CO)2(CO)14] (1), [K(benzo-18-crown-6)]2[Fe5(µ5-C)(µ2-CO)1(CO)13] (2), and [K(benzo-18-crown-6)]2[Fe5Mo(µ6-C)(µ2-CO)2(CO)15] (3). Because 1 and 2 have the same overall cluster charge (2-) but different numbers of iron sites (1: 6 sites → 2: 5 sites), the metal atoms of 2 are formally oxidized compared to those in 1. Despite this, Mössbauer studies indicate that the iron sites in 2 possess significantly greater electron density (lower spectroscopic oxidation state) compared with those in 1. Iron K-edge X-ray absorption and valence-to-core X-ray emission spectroscopy measurements, paired with density functional theory spectral calculations, revealed the presence of significant metal-to-metal and carbide 2p-based character in the filled valence and low-lying unfilled electronic manifolds. In all of the above experiments, the presence of the molybdenum atom in 3 (Fe5Mo) results in somewhat unremarkable spectroscopic properties that are essentially a "hybrid" of 1 (Fe6) and 2 (Fe5). The overall electronic portrait that emerges illustrates that the central inorganic carbide ligand is essential for distributing charge and maximizing electronic communication throughout the cluster. It is evident that the carbide coordination environment is quite flexible and adaptive: it can drastically modify the covalency of individual Fe-C bonds based on local structural changes and redox manipulation of the clusters. In light of these findings, our data and calculations suggest a potential role for the central carbon atom in FeMoco, which likely performs a similar function in order to maintain cluster integrity through multiple redox and ligand binding events.

7.
Biochim Biophys Acta ; 1853(6): 1370-94, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25686535

RESUMO

The advanced electron paramagnetic resonance (EPR) techniques, electron nuclear double resonance (ENDOR) and electron spin echo envelope modulation (ESEEM) spectroscopies, provide unique insights into the structure, coordination chemistry, and biochemical mechanism of nature's widely distributed iron-sulfur cluster (FeS) proteins. This review describes the ENDOR and ESEEM techniques and then provides a series of case studies on their application to a wide variety of FeS proteins including ferredoxins, nitrogenase, and radical SAM enzymes. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Proteínas Ferro-Enxofre/química , Ferro/química , Enxofre/química , Espectroscopia de Ressonância de Spin Eletrônica/tendências , Ferredoxinas/química , Ferredoxinas/metabolismo , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Nitrogenase/química , Nitrogenase/metabolismo , Estrutura Terciária de Proteína , Enxofre/metabolismo
8.
Biochemistry ; 51(40): 7891-900, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22971227

RESUMO

The P(1B)-type ATPases are a ubiquitous family of P-type ATPases involved in the transport of transition metal ions. Divided into subclasses based on sequence characteristics and substrate specificity, these integral membrane transporters play key roles in metal homeostasis, metal tolerance, and the biosynthesis of metalloproteins. The P(1B-4)-ATPases have the simplest architecture of the five P(1B)-ATPase families and have been suggested to play a role in Co(2+) transport. A P(1B-4)-ATPase from Sulfitobacter sp. NAS-14.1, designated sCoaT, has been cloned, expressed, and purified. Activity assays indicate that sCoaT is specific for Co(2+). A single Co(2+) binding site is present, and optical, electron paramagnetic resonance, and X-ray absorption spectroscopic data are consistent with tetrahedral coordination by oxygen and nitrogen ligands, including a histidine and likely a water. Surprisingly, there is no evidence for coordination by sulfur. Mutation of a conserved cysteine residue, Cys 327, in the signature transmembrane Ser-Pro-Cys metal binding motif does not abolish the ATP hydrolysis activity or affect the spectroscopic analysis, establishing that this residue is not involved in the initial Co(2+) binding by sCoaT. In contrast, replacements of conserved transmembrane residues Ser 325, His 657, Glu 658, and Thr 661 with alanine abolish ATP hydrolysis activity and Co(2+) binding, indicating that these residues are necessary for Co(2+) transport. These data represent the first in vitro characterization of a P(1B-4)-ATPase and its Co(2+) binding site.


Assuntos
Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte/metabolismo , Cobalto/metabolismo , Rhodobacteraceae/enzimologia , Absorciometria de Fóton , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Sítios de Ligação , Transporte Biológico/fisiologia , Proteínas de Transporte/química , Proteínas de Transporte/genética , Clonagem Molecular , Espectroscopia de Ressonância de Spin Eletrônica , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Dados de Sequência Molecular , Ligação Proteica , Rhodobacteraceae/genética , Rhodobacteraceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA