Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102123, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38333672

RESUMO

Gene variants in LZTR1 are implicated to cause Noonan syndrome associated with a severe and early-onset hypertrophic cardiomyopathy. Mechanistically, LZTR1 deficiency results in accumulation of RAS GTPases and, as a consequence, in RAS-MAPK signaling hyperactivity, thereby causing the Noonan syndrome-associated phenotype. Despite its epidemiological relevance, pharmacological as well as invasive therapies remain limited. Here, personalized CRISPR-Cas9 gene therapies might offer a novel alternative for a curative treatment in this patient cohort. In this study, by utilizing a patient-specific screening platform based on iPSC-derived cardiomyocytes from two Noonan syndrome patients, we evaluated different clinically translatable therapeutic approaches using small Cas9 orthologs targeting a deep-intronic LZTR1 variant to cure the disease-associated molecular pathology. Despite high editing efficiencies in cardiomyocyte cultures transduced with lentivirus or all-in-one adeno-associated viruses, we observed crucial differences in editing outcomes in proliferative iPSCs vs. non-proliferative cardiomyocytes. While editing in iPSCs rescued the phenotype, the same editing approaches did not robustly restore LZTR1 function in cardiomyocytes, indicating critical differences in the activity of DNA double-strand break repair mechanisms between proliferative and non-proliferative cell types and highlighting the importance of cell type-specific screens for testing CRISPR-Cas9 gene therapies.

2.
EMBO Mol Med ; 15(9): e17399, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37533404

RESUMO

Mitochondria are central for cellular metabolism and energy supply. Barth syndrome (BTHS) is a severe disorder, due to dysfunction of the mitochondrial cardiolipin acyl transferase tafazzin. Altered cardiolipin remodeling affects mitochondrial inner membrane organization and function of membrane proteins such as transporters and the oxidative phosphorylation (OXPHOS) system. Here, we describe a mouse model that carries a G197V exchange in tafazzin, corresponding to BTHS patients. TAZG197V mice recapitulate disease-specific pathology including cardiac dysfunction and reduced oxidative phosphorylation. We show that mutant mitochondria display defective fatty acid-driven oxidative phosphorylation due to reduced levels of carnitine palmitoyl transferases. A metabolic switch in ATP production from OXPHOS to glycolysis is apparent in mouse heart and patient iPSC cell-derived cardiomyocytes. An increase in glycolytic ATP production inactivates AMPK causing altered metabolic signaling in TAZG197V . Treatment of mutant cells with AMPK activator reestablishes fatty acid-driven OXPHOS and protects mice against cardiac dysfunction.


Assuntos
Síndrome de Barth , Camundongos , Animais , Síndrome de Barth/metabolismo , Síndrome de Barth/patologia , Cardiolipinas/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Glicólise , Ácidos Graxos/metabolismo , Trifosfato de Adenosina
3.
Commun Biol ; 6(1): 657, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344639

RESUMO

Noonan syndrome (NS), the most common among RASopathies, is caused by germline variants in genes encoding components of the RAS-MAPK pathway. Distinct variants, including the recurrent Ser257Leu substitution in RAF1, are associated with severe hypertrophic cardiomyopathy (HCM). Here, we investigated the elusive mechanistic link between NS-associated RAF1S257L and HCM using three-dimensional cardiac bodies and bioartificial cardiac tissues generated from patient-derived induced pluripotent stem cells (iPSCs) harboring the pathogenic RAF1 c.770 C > T missense change. We characterize the molecular, structural, and functional consequences of aberrant RAF1-associated signaling on the cardiac models. Ultrastructural assessment of the sarcomere revealed a shortening of the I-bands along the Z disc area in both iPSC-derived RAF1S257L cardiomyocytes and myocardial tissue biopsies. The aforementioned changes correlated with the isoform shift of titin from a longer (N2BA) to a shorter isoform (N2B) that also affected the active force generation and contractile tensions. The genotype-phenotype correlation was confirmed using cardiomyocyte progeny of an isogenic gene-corrected RAF1S257L-iPSC line and was mainly reversed by MEK inhibition. Collectively, our findings uncovered a direct link between a RASopathy gene variant and the abnormal sarcomere structure resulting in a cardiac dysfunction that remarkably recapitulates the human disease.


Assuntos
Cardiomiopatia Hipertrófica , Síndrome de Noonan , Proteínas Proto-Oncogênicas c-raf , Humanos , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Mutação em Linhagem Germinativa , Miócitos Cardíacos/metabolismo , Síndrome de Noonan/genética , Síndrome de Noonan/complicações , Síndrome de Noonan/metabolismo , Transdução de Sinais , Proteínas Proto-Oncogênicas c-raf/genética
4.
Stem Cell Res ; 69: 103105, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121193

RESUMO

Activating KRAS codon 12 gene variants are known to cause severe RAS-MAPK and PI3K-AKT signaling pathway hyperactivity and are frequently involved in the development of various carcinomas. Here, we describe the generation of a human iPSC line harboring the common oncogenic KRAS p.G12V variant by using CRISPR/Cas9 technology. The established KRASG12V iPSC line allows the study of oncogenic KRAS-induced signaling dysregulation and its impact on cell physiology in various iPSC-derived cell types and tissues. Furthermore, it might serve as a powerful platform for drug and toxicity screenings to identify new chemotherapeutic drugs.


Assuntos
Células-Tronco Pluripotentes Induzidas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Mutação/genética
5.
Commun Biol ; 5(1): 969, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109584

RESUMO

Crucial conventional patch-clamp approaches to investigate cellular electrophysiology suffer from low-throughput and require considerable experimenter expertise. Automated patch-clamp (APC) approaches are more experimenter independent and offer high-throughput, but by design are predominantly limited to assays containing small, homogenous cells. In order to enable high-throughput APC assays on larger cells such as native cardiomyocytes isolated from mammalian hearts, we employed a fixed-well APC plate format. A broad range of detailed electrophysiological parameters including action potential, L-type calcium current and basal inward rectifier current were reliably acquired from isolated swine atrial and ventricular cardiomyocytes using APC. Effective pharmacological modulation also indicated that this technique is applicable for drug screening using native cardiomyocyte material. Furthermore, sequential acquisition of multiple parameters from a single cell was successful in a high throughput format, substantially increasing data richness and quantity per experimental run. When appropriately expanded, these protocols will provide a foundation for effective mechanistic and phenotyping studies of human cardiac electrophysiology. Utilizing scarce biopsy samples, regular high throughput characterization of primary cardiomyocytes using APC will facilitate drug development initiatives and personalized treatment strategies for a multitude of cardiac diseases.


Assuntos
Cálcio , Miócitos Cardíacos , Animais , Fenômenos Eletrofisiológicos , Eletrofisiologia , Humanos , Mamíferos , Técnicas de Patch-Clamp , Suínos
6.
Front Cardiovasc Med ; 9: 839104, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35265687

RESUMO

Background: Cardiac dysfunction including arrhythmias appear frequently in patients with cancers, which are expected to be caused mainly by cardiotoxic effects of chemotherapy. Experimental studies investigating the effects of cancer cell secretion without chemotherapy on ion channel function in human cardiomyocytes are still lacking. Methods: The human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three healthy donors were treated with gastrointestinal (GI) cancer (AGS and SW480 cells) medium for 48 h. The qPCR, patch-clamp, western blotting, immunostaining, dot blotting, bisulfite sequence, and overexpression of the ten-eleven translocation (TET) enzyme were performed for the study. Results: After treated with cancer cell secretion, the maximum depolarization velocity and the action potential amplitude were reduced, the action potential duration prolonged, peak Na+ current, and the transient outward current were decreased, late Na+ and the slowly activating delayed rectifier K+ current were increased. Changes of mRNA and protein level of respective channels were detected along with altered DNA methylation level in CpG island in the promoter regions of ion channel genes and increased protein levels of DNA methyltransferases. Phosphoinositide 3-kinase (PI3K) inhibitor attenuated and transforming growth factor-ß (TGF-ß) mimicked the effects of cancer cell secretion. Conclusions: GI cancer cell secretion could induce ion channel dysfunction, which may contribute to occurrence of arrhythmias in cancer patients. The ion channel dysfunction could result from DNA methylation of ion channel genes via activation of TGF-ß/PI3K signaling. This study may provide new insights into pathogenesis of arrhythmia in cancer patients.

7.
Am J Med Genet A ; 188(6): 1915-1927, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266292

RESUMO

RASopathies are a group of genetic disorders that are caused by genes that affect the canonical Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Despite tremendous progress in understanding the molecular consequences of these genetic anomalies, little movement has been made in translating these findings to the clinic. This year, the seventh International RASopathies Symposium focused on expanding the research knowledge that we have gained over the years to enhance new discoveries in the field, ones that we hope can lead to effective therapeutic treatments. Indeed, for the first time, research efforts are finally being translated to the clinic, with compassionate use of Ras/MAPK pathway inhibitors for the treatment of RASopathies. This biannual meeting, organized by the RASopathies Network, brought together basic scientists, clinicians, clinician scientists, patients, advocates, and their families, as well as representatives from pharmaceutical companies and the National Institutes of Health. A history of RASopathy gene discovery, identification of new disease genes, and the latest research, both at the bench and in the clinic, were discussed.


Assuntos
Síndrome de Costello , Síndrome de Noonan , Síndrome de Costello/genética , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Síndrome de Noonan/genética , Transdução de Sinais , Proteínas ras/genética , Proteínas ras/metabolismo
8.
Hum Mol Genet ; 31(13): 2185-2193, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099000

RESUMO

Bloom syndrome (BS) is an autosomal recessive disease clinically characterized by primary microcephaly, growth deficiency, immunodeficiency and predisposition to cancer. It is mainly caused by biallelic loss-of-function mutations in the BLM gene, which encodes the BLM helicase, acting in DNA replication and repair processes. Here, we describe the gene expression profiles of three BS fibroblast cell lines harboring causative, biallelic truncating mutations obtained by single-cell (sc) transcriptome analysis. We compared the scRNA transcription profiles from three BS patient cell lines to two age-matched wild-type controls and observed specific deregulation of gene sets related to the molecular processes characteristically affected in BS, such as mitosis, chromosome segregation, cell cycle regulation and genomic instability. We also found specific upregulation of genes of the Fanconi anemia pathway, in particular FANCM, FANCD2 and FANCI, which encode known interaction partners of BLM. The significant deregulation of genes associated with inherited forms of primary microcephaly observed in our study might explain in part the molecular pathogenesis of microcephaly in BS, one of the main clinical characteristics in patients. Finally, our data provide first evidence of a novel link between BLM dysfunction and transcriptional changes in condensin complex I and II genes. Overall, our study provides novel insights into gene expression profiles in BS on an sc level, linking specific genes and pathways to BLM dysfunction.


Assuntos
Síndrome de Bloom , Microcefalia , Adenosina Trifosfatases , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , DNA Helicases , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos , RecQ Helicases/genética , RecQ Helicases/metabolismo
9.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008953

RESUMO

Clinically used heart valve prostheses, despite their progress, are still associated with limitations. Biodegradable poly-ε-caprolactone (PCL) nanofiber scaffolds, as a matrix, were seeded with human endothelial colony-forming cells (ECFCs) and human induced-pluripotent stem cells-derived MSCs (iMSCs) for the generation of tissue-engineered heart valves. Cell adhesion, proliferation, and distribution, as well as the effects of coating PCL nanofibers, were analyzed by fluorescence microscopy and SEM. Mechanical properties of seeded PCL scaffolds were investigated under uniaxial loading. iPSCs were used to differentiate into iMSCs via mesoderm. The obtained iMSCs exhibited a comparable phenotype and surface marker expression to adult human MSCs and were capable of multilineage differentiation. EFCFs and MSCs showed good adhesion and distribution on PCL fibers, forming a closed cell cover. Coating of the fibers resulted in an increased cell number only at an early time point; from day 7 of colonization, there was no difference between cell numbers on coated and uncoated PCL fibers. The mechanical properties of PCL scaffolds under uniaxial loading were compared with native porcine pulmonary valve leaflets. The Young's modulus and mean elongation at Fmax of unseeded PCL scaffolds were comparable to those of native leaflets (p = ns.). Colonization of PCL scaffolds with human ECFCs or iMSCs did not alter these properties (p = ns.). However, the native heart valves exhibited a maximum tensile stress at a force of 1.2 ± 0.5 N, whereas it was lower in the unseeded PCL scaffolds (0.6 ± 0.0 N, p < 0.05). A closed cell layer on PCL tissues did not change the values of Fmax (ECFCs: 0.6 ± 0.1 N; iMSCs: 0.7 ± 0.1 N). Here, a successful two-phase protocol, based on the timed use of differentiation factors for efficient differentiation of human iPSCs into iMSCs, was developed. Furthermore, we demonstrated the successful colonization of a biodegradable PCL nanofiber matrix with human ECFCs and iMSCs suitable for the generation of tissue-engineered heart valves. A closed cell cover was already evident after 14 days for ECFCs and 21 days for MSCs. The PCL tissue did not show major mechanical differences compared to native heart valves, which was not altered by short-term surface colonization with human cells in the absence of an extracellular matrix.


Assuntos
Biopolímeros/química , Caproatos/química , Células Progenitoras Endoteliais/citologia , Valvas Cardíacas , Células-Tronco Pluripotentes Induzidas/citologia , Lactonas/química , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual , Alicerces Teciduais , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Células Progenitoras Endoteliais/metabolismo , Matriz Extracelular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Nanofibras , Suínos , Alicerces Teciduais/química
10.
Sci Transl Med ; 13(618): eabd3079, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34731013

RESUMO

Heterozygous truncating variants in TTN (TTNtv), the gene coding for titin, cause dilated cardiomyopathy (DCM), but the underlying pathomechanisms are unclear and disease management remains uncertain. Truncated titin proteins have not yet been considered as a contributor to disease development. Here, we studied myocardial tissues from nonfailing donor hearts and 113 patients with end-stage DCM for titin expression and identified a TTNtv in 22 patients with DCM (19.5%). We directly demonstrate titin haploinsufficiency in TTNtv-DCM hearts and the absence of compensatory changes in the alternative titin isoform Cronos. Twenty-one TTNtv-DCM hearts in our cohort showed stable expression of truncated titin proteins. Expression was variable, up to half of the total titin protein pool, and negatively correlated with patient age at heart transplantation. Truncated titin proteins were not detected in sarcomeres but were present in intracellular aggregates, with deregulated ubiquitin-dependent protein quality control. We produced human induced pluripotent stem cell­derived cardiomyocytes (hiPSC-CMs), comparing wild-type controls to cells with a patient-derived, prototypical A-band-TTNtv or a CRISPR-Cas9­generated M-band-TTNtv. TTNtv-hiPSC-CMs showed reduced wild-type titin expression and contained truncated titin proteins whose proportion increased upon inhibition of proteasomal activity. In engineered heart muscle generated from hiPSC-CMs, depressed contractility caused by TTNtv could be reversed by correction of the mutation using CRISPR-Cas9, eliminating truncated titin proteins and raising wild-type titin content. Functional improvement also occurred when wild-type titin protein content was increased by proteasome inhibition. Our findings reveal the major pathomechanisms of TTNtv-DCM and can be exploited for new therapies to treat TTNtv-related cardiomyopathies.


Assuntos
Cardiomiopatias , Conectina , Transplante de Coração , Células-Tronco Pluripotentes Induzidas , Cardiomiopatias/genética , Conectina/genética , Conectina/metabolismo , Haploinsuficiência , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Doadores de Tecidos
11.
Sci Rep ; 11(1): 14689, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34282193

RESUMO

The non-selective cation channel transient receptor potential vanilloid 1 (TRPV1) is expressed throughout the cardiovascular system. Recent evidence shows a role for TRPV1 in inflammatory processes. The role of TRPV1 for myocardial inflammation has not been established yet. Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (hiPSC-CM) from 4 healthy donors were incubated with lipopolysaccharides (LPS, 6 h), TRPV1 agonist capsaicin (CAP, 20 min) or the antagonist capsazepine (CPZ, 20 min). TRPV1 expression was studied by PCR and western blotting. TRPV1 internalization was analyzed by immunofluorescence. Interleukin-6 (IL-6) secretion and phosphorylation of JNK, p38 and ERK were determined by ELISA. TRPV1-associated ion channel current was measured by patch clamp. TRPV1-mRNA and -protein were expressed in hiPSC-CM. TRPV1 was localized in the plasma membrane. LPS significantly increased secretion of IL-6 by 2.3-fold, which was prevented by pre-incubation with CPZ. LPS induced TRPV1 internalization. Phosphorylation levels of ERK, p38 or JNK were not altered by TRPV1 stimulation or inhibition. LPS and IL-6 significantly lowered TRPV1-mediated ion channel current. TRPV1 mediates the LPS-induced inflammation in cardiomyocytes, associated with changes of cellular electrophysiology. LPS-induced inflammation results in TRPV1 internalization. Further studies have to examine the underlying pathways and the clinical relevance of these findings.


Assuntos
Células-Tronco Pluripotentes Induzidas/fisiologia , Inflamação/metabolismo , Miócitos Cardíacos/fisiologia , Canais de Cátion TRPV/metabolismo , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/patologia , Interleucina-6/metabolismo , Lipopolissacarídeos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/agonistas , Canais de Cátion TRPV/genética
12.
J Bone Miner Res ; 36(8): 1621-1635, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33905594

RESUMO

Human induced pluripotent stem cells (hiPSCs) hold great potential for modeling human diseases and the development of innovative therapeutic approaches. Here, we report on a novel, simplified differentiation method for forming functional osteoclasts from hiPSCs. The three-step protocol starts with embryoid body formation, followed by hematopoietic specification, and finally osteoclast differentiation. We observed continuous production of monocyte-like cells over a period of up to 9 weeks, generating sufficient material for several osteoclast differentiations. The analysis of stage-specific gene and surface marker expression proved mesodermal priming, the presence of monocyte-like cells, and of terminally differentiated multinucleated osteoclasts, able to form resorption pits and trenches on bone and dentine in vitro. In comparison to peripheral blood mononuclear cell (PBMC)-derived osteoclasts hiPSC-derived osteoclasts were larger and contained a higher number of nuclei. Detailed functional studies on the resorption behavior of hiPSC-osteoclasts indicated a trend towards forming more trenches than pits and an increase in pseudoresorption. We used hiPSCs from an autosomal recessive osteopetrosis (ARO) patient (BIHi002-A, ARO hiPSCs) with compound heterozygous missense mutations p.(G292E) and p.(R403Q) in CLCN7, coding for the Cl- /H+ -exchanger ClC-7, for functional investigations. The patient's leading clinical feature was a brain malformation due to defective neuronal migration. Mutant ClC-7 displayed residual expression and retained lysosomal co-localization with OSTM1, the gene coding for the osteopetrosis-associated transmembrane protein 1, but only ClC-7 harboring the mutation p.(R403Q) gave strongly reduced ion currents. An increased autophagic flux in spite of unchanged lysosomal pH was evident in undifferentiated ARO hiPSCs. ARO hiPSC-derived osteoclasts showed an increased size compared to hiPSCs of healthy donors. They were not able to resorb bone, underlining a loss-of-function effect of the mutations. In summary, we developed a highly reproducible, straightforward hiPSC-osteoclast differentiation protocol. We demonstrated that osteoclasts differentiated from ARO hiPSCs can be used as a disease model for ARO and potentially also other osteoclast-related diseases. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Células-Tronco Pluripotentes Induzidas , Osteopetrose , Canais de Cloreto/genética , Humanos , Leucócitos Mononucleares , Mutação , Osteoclastos , Osteopetrose/genética
13.
Europace ; 23(7): 1137-1148, 2021 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-33604602

RESUMO

AIMS: This study aimed to investigate possible roles and underlying mechanisms of alpha-adrenoceptor coupled signalling for the pathogenesis of Takotsubo syndrome (TTS). METHODS AND RESULTS: Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were treated with a toxic concentration of epinephrine (Epi, 0.5 mM for 1 h) to mimic the setting of TTS. Patch-clamp technique, polymerase chain reaction (PCR) and Fluorescence-activated cell sorting (FACS) were employed for the study. High concentration Epi suppressed the depolarization velocity, prolonged duration of action potentials and induced arrhythmic events in hiPSC-CMs. The Epi effects were attenuated by an alpha-adrenoceptor blocker (phentolamine), suggesting involvement of alpha-adrenoceptor signalling in arrhythmogenesis related to QT interval prolongation in the setting of TTS. An alpha 1-adrenoceptor agonist (phenylephrine) but not an alpha 2-adrenoceptor agonist (clonidine) mimicked Epi effects. Epi enhanced ROS production, which could be attenuated by the alpha- adrenoceptor blocker. Treatment of cells with H2O2 (100 µM) mimicked the effects of Epi on action potentials and a reactive oxygen species (ROS)-blocker (N-acetyl-I-cysteine, 1 mM) prevented the Epi effects, indicating that the ROS signalling is involved in the alpha-adrenoceptor actions. Nicotinamide adenine dinucleotide phosphate hydrogen (NADPH) oxidases were involved in alpha 1-adrenoceptor signalling. A protein kinase C (PKC) blocker suppressed the effects of Epi, phenylephrine and ROS as well, implying that PKC participated in alpha 1-adrenoceptor signalling and acted as a downstream factor of ROS. The abnormal action potentials resulted from alpha 1-adrenoceptor activation-induced dysfunctions of ion channels including the voltage-dependent Na+ and L-type Ca2+ channels. CONCLUSIONS: Alpha 1-adrenoceptor signalling plays important roles for arrhythmogenesis of TTS. Alpha-adrenoceptor blockers might be clinically helpful for treating arrhythmias in patients with TTS.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Potenciais de Ação , Catecolaminas/toxicidade , Humanos , Peróxido de Hidrogênio , Receptores Adrenérgicos alfa 1
15.
Sci Rep ; 10(1): 10921, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616843

RESUMO

Patient-specific induced pluripotent stem cells (ps-iPSCs) and their differentiated cell types are a powerful model system to gain insight into mechanisms driving early developmental and disease-associated regulatory networks. In this study, we use ps-iPSCs to gain insights into Tetralogy of Fallot (TOF), which represents the most common cyanotic heart defect in humans. iPSCs were generated and further differentiated to cardiomyocytes (CMs) using standard methods from two well-characterized TOF patients and their healthy relatives serving as controls. Patient-specific expression patterns and genetic variability were investigated using whole genome and transcriptome sequencing data. We first studied the clonal mutational burden of the derived iPSCs. In two out of three iPSC lines of patient TOF-01, we found a somatic mutation in the DNA-binding domain of tumor suppressor P53, which was not observed in the genomic DNA from blood. Further characterization of this mutation showed its functional impact. For patient TOF-02, potential disease-relevant differential gene expression between and across cardiac differentiation was shown. Here, clear differences at the later stages of differentiation could be observed between CMs of the patient and its controls. Overall, this study provides first insights into the complex molecular mechanisms underlying iPSC-derived cardiomyocyte differentiation and its transcriptional alterations in TOF.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo , Tetralogia de Fallot/patologia , Estudos de Casos e Controles , Diferenciação Celular , Células Clonais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Estudos de Associação Genética , Mutação em Linhagem Germinativa , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Pele/citologia , Tetralogia de Fallot/genética , Transcrição Gênica
16.
Basic Res Cardiol ; 115(3): 27, 2020 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-32146539

RESUMO

Heart failure is a major health problem worldwide with a significant morbidity and mortality rate. Although studied extensively in animal models, data from patients at the compensated disease stage are lacking. We sampled myocardium biopsies from aortic stenosis patients with compensated hypertrophy and moderate heart failure and used transcriptomics to study the transition to failure. Sequencing and comparative analysis of analogous samples of mice with transverse aortic constriction identified 25 candidate genes with similar regulation in response to pressure overload, reflecting highly conserved molecular processes. The gene cysteine-rich secretory protein LCCL domain containing 1 (CRISPLD1) is upregulated in the transition to failure in human and mouse and its function is unknown. Homology to ion channel regulatory toxins suggests a role in Ca2+ cycling. CRISPR/Cas9-mediated loss-of-function leads to dysregulated Ca2+ handling in human-induced pluripotent stem cell-derived cardiomyocytes. The downregulation of prohypertrophic, proapoptotic and Ca2+-signaling pathways upon CRISPLD1-KO and its upregulation in the transition to failure implicates a contribution to adverse remodeling. These findings provide new pathophysiological data on Ca2+ regulation in the transition to failure and novel candidate genes with promising potential for therapeutic interventions.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Evolução Molecular , Insuficiência Cardíaca/metabolismo , Sequência de Aminoácidos , Animais , Estenose da Valva Aórtica/complicações , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Apoptose , Biópsia , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Sequência Conservada , Regulação para Baixo , Feminino , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Transcriptoma , Fator de Crescimento Transformador beta/metabolismo
17.
Europace ; 20(FI1): f46-f56, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566126

RESUMO

Aims: Our aim is to investigate the arrhythmogenic mechanism in arrhythmogenic right ventricular cardiomyopathy (ARVC)-patients by using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Methods and results: Human-induced pluripotent stem cell-derived cardiomyocytes were generated from human skin fibroblasts of two healthy donors and an ARVC-patient with a desmoglein-2 (DSG2) mutation. Patch clamp, quantitative polymerase chain reaction, and calcium imaging techniques were employed for the study. The amplitude and maximal upstroke velocity (Vmax) of action potential (AP) in ARVC-cells were smaller than that in healthy donor cells, whereas the resting potential and AP duration (APD) was not changed. The reduced Vmax resulted from decreased peak sodium current. The reason for undetected changes in APD may be the counter-action of reduced transient outward, small conductance Ca2+-activated, adenosine triphosphate-sensitive, Na/Ca exchanger (INCX) currents, and enhanced rapidly delayed rectifier currents. Isoprenaline (Iso) reduced INCX and shortened APD in both donor and ARVC-hiPSC-CMs. However, the effects of Iso in ARVC-cells are significantly larger than that in donor cells. In addition, ARVC-hiPSC-CMs showed more frequently than donor cells arrhythmogenic events induced by adrenergic stimulation. Conclusion: Cardiomyocytes derived from the ARVC patient with a DSG2 mutation displayed multiple ion channel dysfunctions and abnormal cellular electrophysiology as well as enhanced sensitivity to adrenergic stimulation. These may underlie the arrhythmogenesis in ARVC patients.


Assuntos
Potenciais de Ação , Displasia Arritmogênica Ventricular Direita/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Potenciais de Ação/efeitos dos fármacos , Agonistas Adrenérgicos beta/farmacologia , Displasia Arritmogênica Ventricular Direita/genética , Displasia Arritmogênica Ventricular Direita/patologia , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Sinalização do Cálcio , Estudos de Casos e Controles , Células Cultivadas , Canais de Potássio de Retificação Tardia/metabolismo , Desmogleína 2/genética , Desmogleína 2/metabolismo , Predisposição Genética para Doença , Frequência Cardíaca , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/patologia , Isoproterenol/farmacologia , Cinética , Masculino , Pessoa de Meia-Idade , Mutação , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Fenótipo , Trocador de Sódio e Cálcio/metabolismo
18.
Int J Cardiol ; 254: 195-202, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29407091

RESUMO

BACKGROUND AND PURPOSE: Previous studies revealed that Takotsubo cardiomyopathy (TTC), a transient disorder of ventricular dysfunction affecting predominantly postmenopausal women, is associated with acquired long QT syndrome and arrhythmias, but the exact pathophysiologic mechanism is unknown. Our aim is to investigate the electrophysiological mechanism for QT-prolongation in TTC-patients by using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). METHODS: hiPSC-CMs, which were generated from human skin fibroblasts of three healthy donors, were treated by estradiol (10µM for one week) and a toxic concentration of isoprenaline (Iso, 1mM for 2h). Patch clamp techniques, qPCR and fluorescence-activated cell sorting (FACS) were employed for the study. KEY RESULTS: Iso enhanced late INa and suppressed Ito and thus prolonged the action potential duration (APD), suggesting possible reasons for arrhythmias in TTC. Iso elevated the production of reactive oxygen species (ROS). N-acetylcystein (1mM), a ROS-blocker, abolished the effects of Iso on late INa and Ito. H2O2 (100µM) mimicked Iso effects on late INa and Ito. These data indicate that the effects of Iso were mediated by ROS. Metoprolol (1mM), a beta-blocker, prevented the effects of Iso on late INa and APD, confirming the adrenoceptor-dependent effects of Iso. Estradiol treatment prevented the APD-prolongation, attenuated the enhancement of INa, diminished the reduction of Ito, suppressed ROS-production induced by Iso and reduced the expression levels of adrenoceptors, suggesting protective effects of estragon against toxic effects of catecholamine. CONCLUSIONS: Estradiol has protective effects against catecholamine excess and hence reduction in estrogen level may increase the risk of acquired long QT syndrome in TTC.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Catecolaminas/toxicidade , Citoproteção/efeitos dos fármacos , Estradiol/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Potenciais de Ação/fisiologia , Células Cultivadas , Citoproteção/fisiologia , Estradiol/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/fisiologia , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/fisiopatologia , Miócitos Cardíacos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Cardiomiopatia de Takotsubo/tratamento farmacológico , Cardiomiopatia de Takotsubo/fisiopatologia
19.
J Am Coll Cardiol ; 70(8): 975-991, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28818208

RESUMO

BACKGROUND: Takotsubo syndrome (TTS) is characterized by an acute left ventricular dysfunction and is associated with life-threating complications in the acute phase. The underlying disease mechanism in TTS is still unknown. A genetic basis has been suggested to be involved in the pathogenesis. OBJECTIVES: The aims of the study were to establish an in vitro induced pluripotent stem cell (iPSC) model of TTS, to test the hypothesis of altered ß-adrenergic signaling in TTS iPSC-cardiomyocytes (CMs), and to explore whether genetic susceptibility underlies the pathophysiology of TTS. METHODS: Somatic cells of patients with TTS and control subjects were reprogrammed to iPSCs and differentiated into CMs. Three-month-old CMs were subjected to catecholamine stimulation to simulate neurohumoral overstimulation. We investigated ß-adrenergic signaling and TTS cardiomyocyte function. RESULTS: Enhanced ß-adrenergic signaling in TTS-iPSC-CMs under catecholamine-induced stress increased expression of the cardiac stress marker NR4A1; cyclic adenosine monophosphate levels; and cyclic adenosine monophosphate-dependent protein kinase A-mediated hyperphosphorylation of RYR2-S2808, PLN-S16, TNI-S23/24, and Cav1.2-S1928, and leads to a reduced calcium time to transient 50% decay. These cellular catecholamine-dependent responses were mainly mediated by ß1-adrenoceptor signaling in TTS. Engineered heart muscles from TTS-iPSC-CMs showed an impaired force of contraction and a higher sensitivity to isoprenaline-stimulated inotropy compared with control subjects. In addition, altered electrical activity and increased lipid accumulation were detected in catecholamine-treated TTS-iPSC-CMs, and were confirmed by differentially expressed lipid transporters CD36 and CPT1C. Furthermore, we uncovered genetic variants in different key regulators of cardiac function. CONCLUSIONS: Enhanced ß-adrenergic signaling and higher sensitivity to catecholamine-induced toxicity were identified as mechanisms associated with the TTS phenotype. (International Takotsubo Registry [InterTAK Registry] [InterTAK]; NCT01947621).


Assuntos
Catecolaminas/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Receptores Adrenérgicos beta/metabolismo , Cardiomiopatia de Takotsubo/metabolismo , Adulto , Diferenciação Celular , Células Cultivadas , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Cardiomiopatia de Takotsubo/patologia
20.
PLoS One ; 10(5): e0125544, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950680

RESUMO

Human induced pluripotent stem cells (hiPSCs) could be used to generate autologous cells for therapeutic purposes, which are expected to be tolerated by the recipient. However, iPSC-derived grafts are at risk of giving rise to teratomas in the host, if residuals of tumorigenic cells are not rejected by the recipient. We have analyzed the susceptibility of hiPSC lines to allogeneic and autologous natural killer (NK) cells. IL-2-activated, in contrast to resting NK cells killed hiPSC lines efficiently (P = 1.69 x 10(-39)). Notably, the specific lysis of the individual hiPSC lines by IL-2-activated NK cells was significantly different (P = 1.72 x 10(-6)) and ranged between 46 % and 64 % in 51Cr-release assays when compared to K562 cells. The hiPSC lines were killed by both allogeneic and autologous NK cells although autologous NK cells were less efficient (P=8.63 x 10(-6)). Killing was partly dependent on the activating NK receptor DNAM-1 (P = 8.22 x 10(-7)). The DNAM-1 ligands CD112 and CD155 as well as the NKG2D ligands MICA and MICB were expressed on the hiPSC lines. Low amounts of human leukocyte antigen (HLA) class I proteins, which serve as ligands for inhibitory and activating NK receptors were also detected. Thus, the susceptibility to NK cell killing appears to constitute a common feature of hiPSCs. Therefore, NK cells might reduce the risk of teratoma formation even after autologous transplantations of pluripotent stem cell-derived grafts that contain traces of pluripotent cells.


Assuntos
Antígenos de Diferenciação de Linfócitos T/fisiologia , Células-Tronco Pluripotentes Induzidas/imunologia , Células Matadoras Naturais/imunologia , Linhagem Celular , Humanos , Interleucina-2/farmacologia , Células Matadoras Naturais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA