Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(34): e2204332119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35976880

RESUMO

Attaching and effacing (AE) lesion formation on enterocytes by enteropathogenic Escherichia coli (EPEC) requires the EPEC type III secretion system (T3SS). Two T3SS effectors injected into the host cell during infection are the atypical kinases, NleH1 and NleH2. However, the host targets of NleH1 and NleH2 kinase activity during infection have not been reported. Here phosphoproteomics identified Ser775 in the microvillus protein Eps8 as a bona fide target of NleH1 and NleH2 phosphorylation. Both kinases interacted with Eps8 through previously unrecognized, noncanonical "proline-rich" motifs, PxxDY, that bound the Src Homology 3 (SH3) domain of Eps8. Structural analysis of the Eps8 SH3 domain bound to a peptide containing one of the proline-rich motifs from NleH showed that the N-terminal part of the peptide adopts a type II polyproline helix, and its C-terminal "DY" segment makes multiple contacts with the SH3 domain. Ser775 phosphorylation by NleH1 or NleH2 hindered Eps8 bundling activity and drove dispersal of Eps8 from the AE lesion during EPEC infection. This finding suggested that NleH1 and NleH2 altered the cellular localization of Eps8 and the cytoskeletal composition of AE lesions during EPEC infection.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Fosfotransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Núcleo Celular/metabolismo , Escherichia coli Enteropatogênica/patogenicidade , Infecções por Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Humanos , Microvilosidades/metabolismo , Fosforilação , Fosfotransferases/metabolismo
2.
Biomolecules ; 11(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34944446

RESUMO

Legionella pneumophila is a Gram-negative intracellular pathogen that causes Legionnaires' disease in elderly or immunocompromised individuals. This bacterium relies on the Dot/Icm (Defective in organelle trafficking/Intracellular multiplication) Type IV Secretion System (T4SS) and a large (>330) set of effector proteins to colonize the host cell. The structural variability of these effectors allows them to disrupt many host processes. Herein, we report the crystal structure of MavL to 2.65 Å resolution. MavL adopts an ADP-ribosyltransferase (ART) fold and contains the distinctive ligand-binding cleft of ART proteins. Indeed, MavL binds ADP-ribose with Kd of 13 µM. Structural overlay of MavL with poly-(ADP-ribose) glycohydrolases (PARGs) revealed a pair of aspartate residues in MavL that align with the catalytic glutamates in PARGs. MavL also aligns with ADP-ribose "reader" proteins (proteins that recognize ADP-ribose). Since no glycohydrolase activity was observed when incubated in the presence of ADP-ribosylated PARP1, MavL may play a role as a signaling protein that binds ADP-ribose. An interaction between MavL and the mammalian ubiquitin-conjugating enzyme UBE2Q1 was revealed by yeast two-hybrid and co-immunoprecipitation experiments. This work provides structural and molecular insights to guide biochemical studies aimed at elucidating the function of MavL. Our findings support the notion that ubiquitination and ADP-ribosylation are global modifications exploited by L. pneumophila.


Assuntos
Legionella pneumophila/crescimento & desenvolvimento , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Adenosina Difosfato Ribose/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Células THP-1 , Ubiquitinação
3.
Acta Crystallogr D Struct Biol ; 77(Pt 12): 1535-1542, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866609

RESUMO

Legionella pneumophila is a human pathogen that causes Legionnaires' disease, a severe form of pneumonia. It can be found in various aquatic environments ranging from cooling towers to ponds. In addition to causing disease in humans, it can also infect free-living amoebae commonly found in various aquatic environments. Once inside a human lung macrophage, it creates a niche called the Legionella-containing vacuole where it can evade phagolysosomal degradation and replicate. During infection, normal cellular functions are hijacked by proteins that are secreted by the pathogen, called bacterial effectors. Here, the structural characterization of the effector LegA15/AnkD is reported. The protein contains an ankyrin-repeat domain followed by a cysteine protease-like (CPL) domain with a putative catalytic triad consisting of His268-Asn290-Cys361. The CPL domain shows similarity to the CE clan in the MEROPS database, which contains ubiquitin-like hydrolases. The C-terminal segment of LegA15, including the CPL domain, shows structural similarity to another effector, LegA3/AnkH, while they share only 12% sequence identity. When expressed in mammalian cells, LegA15 is localized within the cytoplasm, in contrast to LegA3, which localizes to the nucleus.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína Proteases/metabolismo , Legionella/metabolismo , Proteínas de Bactérias/química , Cisteína Proteases/química , Interações Hospedeiro-Patógeno , Legionella/patogenicidade , Conformação Proteica , Domínios Proteicos
4.
Nat Commun ; 12(1): 6902, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824239

RESUMO

Synthesis of iron-sulfur (Fe/S) clusters in living cells requires scaffold proteins for both facile synthesis and subsequent transfer of clusters to target apoproteins. The human mitochondrial ISCU2 scaffold protein is part of the core ISC (iron-sulfur cluster assembly) complex that synthesizes a bridging [2Fe-2S] cluster on dimeric ISCU2. Initial iron and sulfur loading onto monomeric ISCU2 have been elucidated biochemically, yet subsequent [2Fe-2S] cluster formation and dimerization of ISCU2 is mechanistically ill-defined. Our structural, biochemical and cell biological experiments now identify a crucial function of the universally conserved N-terminal Tyr35 of ISCU2 for these late reactions. Mixing two, per se non-functional ISCU2 mutant proteins with oppositely charged Asp35 and Lys35 residues, both bound to different cysteine desulfurase complexes NFS1-ISD11-ACP, restores wild-type ISCU2 maturation demonstrating that ionic forces can replace native Tyr-Tyr interactions during dimerization-induced [2Fe-2S] cluster formation. Our studies define the essential mechanistic role of Tyr35 in the reaction cycle of de novo mitochondrial [2Fe-2S] cluster synthesis.


Assuntos
Dimerização , Proteínas Ferro-Enxofre/química , Tirosina/química , Apoproteínas , Liases de Carbono-Enxofre , Cristalografia por Raios X , Ferredoxinas , Células HeLa , Humanos , Ferro , Mitocôndrias , Proteínas Mutantes , Proteínas Recombinantes , Enxofre
5.
Protein Sci ; 30(5): 940-955, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33660322

RESUMO

Legionella pneumophila is an intracellular pathogen that causes Legionnaire's disease in humans. This bacterium can be found in freshwater environments as a free-living organism, but it is also an intracellular parasite of protozoa. Human infection occurs when inhaled aerosolized pathogen comes into contact with the alveolar mucosa and replicates in alveolar macrophages. Legionella enters the host cell by phagocytosis and redirects the Legionella-containing phagosomes from the phagocytic maturation pathway. These nascent phagosomes fuse with ER-derived secretory vesicles and membranes forming the Legionella-containing vacuole. Legionella subverts many host cellular processes by secreting over 300 effector proteins into the host cell via the Dot/Icm type IV secretion system. The cellular function for many Dot/Icm effectors is still unknown. Here, we present a structural and functional study of L. pneumophila effector RavA (Lpg0008). Structural analysis revealed that the RavA consists of four ~85 residue long α-helical domains with similar folds, which show only a low level of structural similarity to other protein domains. The ~90 residues long C-terminal segment is predicted to be natively unfolded. We show that during L. pneumophila infection of human cells, RavA localizes to the Golgi apparatus and to the plasma membrane. The same localization is observed when RavA is expressed in human cells. The localization signal resides within the C-terminal sequence C409 WTSFCGLF417 . Yeast-two-hybrid screen using RavA as bait identified RAB11A as a potential binding partner. RavA is present in L. pneumophila strains but only distant homologs are found in other Legionella species, where the number of repeats varies.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Legionella pneumophila/enzimologia , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Células HEK293 , Humanos , Legionella pneumophila/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas rab de Ligação ao GTP/química , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
mBio ; 12(1)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33563829

RESUMO

Diversion of the Legionella pneumophila-containing vacuole (LCV) from the host endosomal-lysosomal degradation pathway is one of the main virulence features essential for manifestation of Legionnaires' pneumonia. Many of the ∼350 Dot/Icm-injected effectors identified in L. pneumophila have been shown to interfere with various host pathways and processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. While most single effector mutants of L. pneumophila do not exhibit a defective phenotype within macrophages, we show that the MavE effector is essential for intracellular growth of L. pneumophila in human monocyte-derived macrophages (hMDMs) and amoebae and for intrapulmonary proliferation in mice. The mavE null mutant fails to remodel the LCV with endoplasmic reticulum (ER)-derived vesicles and is trafficked to the lysosomes where it is degraded, similar to formalin-killed bacteria. During infection of hMDMs, the MavE effector localizes to the poles of the LCV membrane. The crystal structure of MavE, resolved to 1.8 Å, reveals a C-terminal transmembrane helix, three copies of tyrosine-based sorting motifs, and an NPxY eukaryotic motif, which binds phosphotyrosine-binding domains present on signaling and adaptor eukaryotic proteins. Two point mutations within the NPxY motif result in attenuation of L. pneumophila in both hMDMs and amoeba. The substitution defects of P78 and D64 are associated with failure of vacuoles harboring the mutant to be remodeled by the ER and results in fusion of the vacuole to the lysosomes leading to bacterial degradation. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.IMPORTANCE Intracellular proliferation of Legionella pneumophila within a vacuole in human alveolar macrophages is essential for manifestation of Legionnaires' pneumonia. Intravacuolar growth of the pathogen is totally dependent on remodeling the L. pneumophila-containing vacuole (LCV) by the ER and on its evasion of the endosomal-lysosomal degradation pathway. The pathogen has evolved to inject ∼350 protein effectors into the host cell where they modulate various host processes, but no L. pneumophila effector has ever been identified to be indispensable for lysosomal evasion. We show that the MavE effector localizes to the poles of the LCV membrane and is essential for lysosomal evasion and intracellular growth of L. pneumophila and for intrapulmonary proliferation in mice. The crystal structure of MavE shows an NPxY eukaryotic motif essential for ER-mediated remodeling and lysosomal evasion by the LCV. Therefore, the MavE effector of L. pneumophila is indispensable for phagosome biogenesis and lysosomal evasion.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/patogenicidade , Lisossomos/microbiologia , Macrófagos/microbiologia , Animais , Proteínas de Bactérias/química , Células Cultivadas , Cristalização , Interações Hospedeiro-Patógeno , Humanos , Camundongos , Transporte Proteico , Vacúolos/microbiologia , Virulência
7.
J Biol Chem ; 296: 100085, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33199368

RESUMO

The K-homology (KH) domain is a nucleic acid-binding domain present in many proteins. Recently, we found that the DEAD-box helicase DDX43 contains a KH domain in its N-terminus; however, its function remains unknown. Here, we purified recombinant DDX43 KH domain protein and found that it prefers binding ssDNA and ssRNA. Electrophoretic mobility shift assay and NMR revealed that the KH domain favors pyrimidines over purines. Mutational analysis showed that the GXXG loop in the KH domain is involved in pyrimidine binding. Moreover, we found that an alanine residue adjacent to the GXXG loop is critical for binding. Systematic evolution of ligands by exponential enrichment, chromatin immunoprecipitation-seq, and cross-linking immunoprecipitation-seq showed that the KH domain binds C-/T-rich DNA and U-rich RNA. Bioinformatics analysis suggested that the KH domain prefers to bind promoters. Using 15N-heteronuclear single quantum coherence NMR, the optimal binding sequence was identified as TTGT. Finally, we found that the full-length DDX43 helicase prefers DNA or RNA substrates with TTGT or UUGU single-stranded tails and that the KH domain is critically important for sequence specificity and unwinding processivity. Collectively, our results demonstrated that the KH domain facilitates the substrate specificity and processivity of the DDX43 helicase.


Assuntos
RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Biologia Computacional , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Humanos , Estabilidade Proteica , Purinas/química , Purinas/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Técnica de Seleção de Aptâmeros , Especificidade por Substrato
8.
mBio ; 10(4)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455655

RESUMO

Species of the Legionella genus encode at least 18,000 effector proteins that are translocated through the Dot/Icm type IVB translocation system into macrophages and protist hosts to enable intracellular growth. Eight effectors, including ankyrin H (AnkH), are common to all Legionella species. The AnkH effector is also present in Coxiella and Rickettsiella To date, no pathogenic effectors have ever been described that directly interfere with host cell transcription. We determined that the host nuclear protein La-related protein 7 (LARP7), which is a component of the 7SK small nuclear ribonucleoprotein (snRNP) complex, interacts with AnkH in the host cell nucleus. The AnkH-LARP7 interaction partially impedes interactions of the 7SK snRNP components with LARP7, interfering with transcriptional elongation by polymerase (Pol) II. Consistent with that, our data show AnkH-dependent global reprogramming of transcription of macrophages infected by Legionella pneumophila The crystal structure of AnkH shows that it contains four N-terminal ankyrin repeats, followed by a cysteine protease-like domain and an α-helical C-terminal domain. A substitution within the ß-hairpin loop of the third ankyrin repeat results in diminishment of LARP7-AnkH interactions and phenocopies the ankH null mutant defect in intracellular growth. LARP7 knockdown partially suppresses intracellular proliferation of wild-type (WT) bacteria and increases the severity of the defect of the ΔankH mutant, indicating a role for LARP7 in permissiveness of host cells to intracellular bacterial infection. We conclude that the AnkH-LARP7 interaction impedes interaction of LARP7 with 7SK snRNP, which would block transcriptional elongation by Pol II, leading to host global transcriptional reprogramming and permissiveness to L. pneumophilaIMPORTANCE For intracellular pathogens to thrive in host cells, an environment that supports survival and replication needs to be established. L. pneumophila accomplishes this through the activity of the ∼330 effector proteins that are injected into host cells during infection. Effector functions range from hijacking host trafficking pathways to altering host cell machinery, resulting in altered cell biology and innate immunity. One such pathway is the host protein synthesis pathway. Five L. pneumophila effectors have been identified that alter host cell translation, and 2 effectors have been identified that indirectly affect host cell transcription. No pathogenic effectors have been described that directly interfere with host cell transcription. Here we show a direct interaction of the AnkH effector with a host cell transcription complex involved in transcriptional elongation. We identify a novel process by which AnkH interferes with host transcriptional elongation through interference with formation of a functional complex and show that this interference is required for pathogen proliferation.


Assuntos
Anquirinas/metabolismo , Interações Hospedeiro-Patógeno , Legionella/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Ribonucleoproteínas/metabolismo , Anquirinas/genética , Núcleo Celular/metabolismo , Humanos , Imunidade Inata , Legionella/fisiologia , Legionella pneumophila/genética , Legionella pneumophila/fisiologia , Macrófagos/microbiologia , Ribonucleoproteínas/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Técnicas do Sistema de Duplo-Híbrido
9.
Mol Cell Proteomics ; 18(6): 1138-1156, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30902834

RESUMO

Strains of Salmonella utilize two distinct type three secretion systems to deliver effector proteins directly into host cells. The Salmonella effectors SseK1 and SseK3 are arginine glycosyltransferases that modify mammalian death domain containing proteins with N-acetyl glucosamine (GlcNAc) when overexpressed ectopically or as recombinant protein fusions. Here, we combined Arg-GlcNAc glycopeptide immunoprecipitation and mass spectrometry to identify host proteins GlcNAcylated by endogenous levels of SseK1 and SseK3 during Salmonella infection. We observed that SseK1 modified the mammalian signaling protein TRADD, but not FADD as previously reported. Overexpression of SseK1 greatly broadened substrate specificity, whereas ectopic co-expression of SseK1 and TRADD increased the range of modified arginine residues within the death domain of TRADD. In contrast, endogenous levels of SseK3 resulted in modification of the death domains of receptors of the mammalian TNF superfamily, TNFR1 and TRAILR, at residues Arg376 and Arg293 respectively. Structural studies on SseK3 showed that the enzyme displays a classic GT-A glycosyltransferase fold and binds UDP-GlcNAc in a narrow and deep cleft with the GlcNAc facing the surface. Together our data suggest that salmonellae carrying sseK1 and sseK3 employ the glycosyltransferase effectors to antagonise different components of death receptor signaling.


Assuntos
Proteínas de Bactérias/metabolismo , Salmonella/metabolismo , Transdução de Sinais , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Acetilglucosamina/metabolismo , Animais , Proteínas de Bactérias/química , Sequência Conservada , Ácido Glutâmico/metabolismo , Glicosilação , Células HEK293 , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Mutação/genética , Domínios Proteicos , Células RAW 264.7 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Especificidade por Substrato , Proteína de Domínio de Morte Associada a Receptor de TNF/química , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo
10.
Nat Commun ; 8(1): 1287, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097656

RESUMO

Iron-sulfur (Fe/S) clusters are essential protein cofactors crucial for many cellular functions including DNA maintenance, protein translation, and energy conversion. De novo Fe/S cluster synthesis occurs on the mitochondrial scaffold protein ISCU and requires cysteine desulfurase NFS1, ferredoxin, frataxin, and the small factors ISD11 and ACP (acyl carrier protein). Both the mechanism of Fe/S cluster synthesis and function of ISD11-ACP are poorly understood. Here, we present crystal structures of three different NFS1-ISD11-ACP complexes with and without ISCU, and we use SAXS analyses to define the 3D architecture of the complete mitochondrial Fe/S cluster biosynthetic complex. Our structural and biochemical studies provide mechanistic insights into Fe/S cluster synthesis at the catalytic center defined by the active-site Cys of NFS1 and conserved Cys, Asp, and His residues of ISCU. We assign specific regulatory rather than catalytic roles to ISD11-ACP that link Fe/S cluster synthesis with mitochondrial lipid synthesis and cellular energy status.


Assuntos
Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Mitocôndrias/metabolismo , Proteína de Transporte de Acila/química , Proteína de Transporte de Acila/genética , Proteína de Transporte de Acila/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Liases de Carbono-Enxofre/metabolismo , Chaetomium/química , Chaetomium/genética , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Proteínas Reguladoras de Ferro/química , Proteínas Reguladoras de Ferro/genética , Proteínas Reguladoras de Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Simulação de Dinâmica Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Difração de Raios X , Frataxina
11.
PLoS Pathog ; 13(6): e1006394, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28570695

RESUMO

Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires' Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases) when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM) to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the 'open' conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , ATPases Vacuolares Próton-Translocadoras/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Enzimológica da Expressão Gênica , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Doença dos Legionários/enzimologia , Doença dos Legionários/genética , Conformação Proteica , ATPases Vacuolares Próton-Translocadoras/química , ATPases Vacuolares Próton-Translocadoras/genética
12.
Structure ; 25(2): 376-383, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28111017

RESUMO

Ankyrin B (AnkB/LegAU13) is a translocated F box effector essential for the intracellular replication of the pathogen Legionella pneumophila. AnkB co-opts a host ubiquitin ligase to decorate the pathogen-containing vacuole with K48-linked polyubiquitinated proteins and degrade host proteins as a source of energy. Here, we report that AnkB commandeers the host ubiquitin-proteasome system through mimicry of two eukaryotic protein domains. Using X-ray crystallography, we determined the 3D structure of AnkB in complex with Skp1, a component of the human SCF ubiquitination ligase. The structure confirms that AnkB contains an N-terminal F box similar to Skp2 and a C-terminal substrate-binding domain similar to eukaryotic ankyrin repeats. We identified crucial amino acids in the substrate-binding domain of AnkB and showed them to be essential for the function of AnkB in L. pneumophila intracellular proliferation. The study reveals how Legionella uses molecular mimicry to manipulate the host ubiquitination pathway and proliferate intracellularly.


Assuntos
Anquirinas/química , Interações Hospedeiro-Patógeno , Legionella pneumophila/genética , Proteínas Periplásmicas/química , Proteínas Quinases Associadas a Fase S/química , Sequência de Aminoácidos , Anquirinas/genética , Anquirinas/metabolismo , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Legionella pneumophila/crescimento & desenvolvimento , Legionella pneumophila/patogenicidade , Macrófagos/microbiologia , Modelos Moleculares , Mimetismo Molecular , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/genética , Ubiquitina/metabolismo
13.
PLoS One ; 11(12): e0166643, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27923041

RESUMO

Salmonella Typhimurium GtgE is an effector protein contributing to the virulence of this pathogen. It was shown to possess highly selective proteolytic activity against a subset of Rab proteins that helps in evasion of Salmonella-containing vacuole (SCV) fusion with lysosomes. Cys45, His151 and Asp169 are essential for proteolytic activity. The structure of a C-terminal fragment GtgE(79-214) indicated the presence of a papain-like fold. Here, we present the structure of GtgE(17-214) containing the fully assembled active site. The design of a proteolytically active and crystallizable GtgE construct was aided by NMR spectroscopy. The protein indeed displays papain-like fold with an assembled Cys-His-Asp catalytic triad. Like the full-length GtgE, the crystallizable construct showed low activity in vitro for its known substrates, Rab32 and Rab29. NMR titration experiments showed at most very weak binding of GtgE to the peptide encompassing the Rab29 cleavage site. In view of the low in vitro activity and poor substrate binding, we postulate that the function of GtgE in vivo as a proteolytic enzyme is dependent on other factor(s), such as a protein partner or interactions with the SCV membrane, which stimulate(s) GtgE activity in vivo.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Salmonella typhimurium/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Asparagina/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Cisteína/metabolismo , Histidina/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína
14.
J Biol Chem ; 291(30): 15767-77, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27226543

RESUMO

Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1.


Assuntos
Sistemas de Secreção Bacterianos , Legionella pneumophila , Doença dos Legionários , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Virulência , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/genética , Sistemas de Secreção Bacterianos/metabolismo , Células HEK293 , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/genética , Doença dos Legionários/metabolismo , Metais/química , Metais/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade , Fatores de Virulência/química , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
PLoS One ; 9(6): e100441, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24945826

RESUMO

CbpA is one of the six E. coli DnaJ/Hsp40 homologues of DnaK co-chaperones and the only one that is additionally regulated by a small protein CbpM, conserved in γ-proteobacteria. CbpM inhibits the co-chaperone and DNA binding activities of CbpA. This regulatory function of CbpM is accomplished through reversible interaction with the N-terminal J-domain of CbpA, which is essential for the interaction with DnaK. CbpM is highly specific for CbpA and does not bind DnaJ despite the high degree of structural and functional similarity between the J-domains of CbpA and DnaJ. Here we report the crystal structure of the complex of CbpM with the J-domain of CbpA. CbpM forms dimers and the J-domain of CbpA interacts with both CbpM subunits. The CbpM-binding surface of CbpA is highly overlapping with the CbpA interface for DnaK, providing a competitive model for regulation through forming mutually exclusive complexes. The structure also provides the explanation for the strict specificity of CbpM for CbpA, which we confirmed by making mutants of DnaJ that became regulated by CbpM. Interestingly, the structure of CbpM reveals a striking similarity to members of the MerR family of transcriptional regulators, suggesting an evolutionary connection between the functionally distinct bacterial co-chaperone regulator CbpM and the transcription regulator HspR.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Evolução Molecular , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/química , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Choque Térmico HSP70/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Engenharia de Proteínas , Estrutura Terciária de Proteína , Alinhamento de Sequência , Ressonância de Plasmônio de Superfície
16.
Structure ; 22(6): 878-88, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24856362

RESUMO

Shigella invasion of its human host is assisted by T3SS-delivered effector proteins. The OspG effector kinase binds ubiquitin and ubiquitin-loaded E2-conjugating enzymes, including UbcH5b and UbcH7, and attenuates the host innate immune NF-kB signaling. We present the structure of OspG bound to the UbcH7∼Ub conjugate. OspG has a minimal kinase fold lacking the activation loop of regulatory kinases. UbcH7∼Ub binds OspG at sites remote from the kinase active site, yet increases its kinase activity. The ubiquitin is positioned in the "open" conformation with respect to UbcH7 using its I44 patch to interact with the C terminus of OspG. UbcH7 binds to OspG using two conserved loops essential for E3 ligase recruitment. The interaction of the UbcH7∼Ub with OspG is remarkably similar to the interaction of an E2∼Ub with a HECT E3 ligase. OspG interferes with the interaction of UbcH7 with the E3 parkin and inhibits the activity of the E3.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Shigella flexneri/metabolismo , Shigella flexneri/patogenicidade , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , NF-kappa B/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteólise , Shigella flexneri/genética , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Structure ; 22(2): 250-9, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24373767

RESUMO

Upon host cell infection, pathogenic Escherichia coli hijacks host cellular processes with the help of 20-60 secreted effector proteins that subvert cellular processes to create an environment conducive to bacterial survival. The NleH effector kinases manipulate the NF-κB pathway and prevent apoptosis. They show low sequence similarity to human regulatory kinases and contain two domains, the N-terminal, likely intrinsically unfolded, and a C-terminal kinase-like domain. We show that these effectors autophosphorylate on sites located predominantly in the N-terminal segment. The kinase domain displays a minimal kinase fold, but lacks an activation loop and the GHI subdomain. Nevertheless, all catalytically important residues are conserved. ATP binding proceeds with minimal structural rearrangements. The NleH structure is the first for the bacterial effector kinases family. NleHs and their homologous effector kinases form a new kinase family within the cluster of eukaryotic-like kinases that includes also Rio, Bud32, and KdoK families.


Assuntos
Proteínas de Escherichia coli/química , Fosfotransferases/química , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Apoptose , Catálise , Escherichia coli/enzimologia , Espectrometria de Massas , Dados de Sequência Molecular , NF-kappa B/química , Fosforilação , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos
18.
Proc Natl Acad Sci U S A ; 109(29): 11824-9, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22753479

RESUMO

Although glycopeptide antibiotics (GPAs), including vancomycin and teicoplanin, represent the most important class of anti-infective agents in the treatment of serious gram-positive bacterial infections, their usefulness is threatened by the emergence of resistant strains. GPAs are complex natural products consisting of a heptapeptide skeleton assembled via nonribosomal peptide synthesis and constrained through multiple crosslinks, with diversity resulting from enzymatic modifications by a variety of tailoring enzymes, which can be used to produce GPA analogues that could overcome antibiotic resistance. GPA-modifying sulfotransferases are promising tools for generating the unique derivatives. Despite significant sequence and structural similarities, these sulfotransferases modify distinct side chains on the GPA scaffold. To provide insight into the spatial diversity of modifications, we have determined the crystal structure of the ternary complex of bacterial sulfotransferase StaL with the cofactor product 3'-phosphoadenosine 5'-phosphate and desulfo-A47934 aglycone substrate. Desulfo-A47934 binds with the hydroxyl group on the 4-hydroxyphenylglycine in residue 1 directed toward the 3'-phosphoadenosine 5'-phosphate and hydrogen-bonded to the catalytic His67. Homodimeric StaL can accommodate GPA substrate in only one of the two active sites because of potential steric clashes. Importantly, the aglycone substrate demonstrates a flattened conformation, in contrast to the cup-shaped structures observed previously. Analysis of the conformations of this scaffold showed that despite the apparent rigidity due to crosslinking between the side chains, the aglycone scaffold displays substantial flexibility, important for enzymatic modifications by the GPA-tailoring enzymes. We also discuss the potential of using the current structural information in generating unique GPA derivatives.


Assuntos
Difosfato de Adenosina/metabolismo , Antibacterianos/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Conformação Proteica , Ristocetina/análogos & derivados , Sulfotransferases/metabolismo , Difosfato de Adenosina/química , Antibacterianos/química , Cristalografia , Descoberta de Drogas/métodos , Glicina/análogos & derivados , Glicina/metabolismo , Ligação de Hidrogênio , Complexos Multiproteicos/metabolismo , Ristocetina/química , Ristocetina/metabolismo , Sulfotransferases/química
19.
PLoS Biol ; 8(4): e1000354, 2010 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-20404999

RESUMO

The cysteine desulfurase IscS is a highly conserved master enzyme initiating sulfur transfer via persulfide to a range of acceptor proteins involved in Fe-S cluster assembly, tRNA modifications, and sulfur-containing cofactor biosynthesis. Several IscS-interacting partners including IscU, a scaffold for Fe-S cluster assembly; TusA, the first member of a sulfur relay leading to sulfur incorporation into the wobble uridine of several tRNAs; ThiI, involved in tRNA modification and thiamine biosynthesis; and rhodanese RhdA are sulfur acceptors. Other proteins, such as CyaY/frataxin and IscX, also bind to IscS, but their functional roles are not directly related to sulfur transfer. We have determined the crystal structures of IscS-IscU and IscS-TusA complexes providing the first insight into their different modes of binding and the mechanism of sulfur transfer. Exhaustive mutational analysis of the IscS surface allowed us to map the binding sites of various partner proteins and to determine the functional and biochemical role of selected IscS and TusA residues. IscS interacts with its partners through an extensive surface area centered on the active site Cys328. The structures indicate that the acceptor proteins approach Cys328 from different directions and suggest that the conformational plasticity of a long loop containing this cysteine is essential for the ability of IscS to transfer sulfur to multiple acceptor proteins. The sulfur acceptors can only bind to IscS one at a time, while frataxin and IscX can form a ternary complex with IscU and IscS. Our data support the role of frataxin as an iron donor for IscU to form the Fe-S clusters.


Assuntos
Liases de Carbono-Enxofre/metabolismo , Proteínas de Escherichia coli/química , Proteínas Ferro-Enxofre/química , Conformação Proteica , RNA de Transferência/química , Compostos de Sulfidrila/química , Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/genética , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , RNA de Transferência/metabolismo , Enxofre/química , Enxofre/metabolismo
20.
Mol Biol Cell ; 20(24): 5117-26, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19846660

RESUMO

Activation of the high-osmolarity glycerol (HOG) pathway for osmoregulation in the yeast Saccharomyces cerevisiae involves interaction of the adaptor Ste50p with the cytoplasmic tail of single-transmembrane protein Opy2p. We have determined the solution structure of the Ste50p-RA (Ras association) domain, and it shows an atypical RA fold lacking the beta1 and beta2 strands of the canonical motif. Although the core of the RA domain is fully functional in the pheromone response, an additional region is required for the HOG pathway activation. Two peptide motifs within the intrinsically disordered cytoplasmic tail of Opy2p defined by NMR spectroscopy physically interact with the Step50p-RA domain. These Opy2p-derived peptides bind overlapping regions of the Step50p-RA domain with similarly weak affinities, suggesting a multivalent interaction of these proteins as a crucial point of control of the HOG pathway. As well, overall selection of signaling pathways depends on functionally distinct regions of the Ste50p-RA domain, implicating this element in the control of global regulatory decisions.


Assuntos
Glicerol/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Citoplasma/química , Dados de Sequência Molecular , Concentração Osmolar , Osmose , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Deleção de Sequência , Transdução de Sinais , Estresse Fisiológico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA