Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Rev Cancer ; 1878(6): 189009, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37913943

RESUMO

Post-translational modifications (PTMs) are common covalent processes in biochemical pathways that alter protein function and activity. These modifications occur through proteolytic cleavage or attachment of modifying groups, such as phosphoryl, methyl, glycosyl, or acetyl groups, with one or more amino acid residues of a single protein. Some PTMs also present crosstalk abilities that affect both protein functionality and structure, creating new proteoforms. Any alteration in organism homeostasis may be a cancer hallmark. Cataloging PTMs and consequently, emerging proteoforms, present new therapeutic targets, approaches, and opportunities to discover additional discriminatory biomarkers in disease diagnostics. In this review, we focus on experimentally confirmed PTMs and their potential crosstalk in glioma research to introduce new opportunities for this tumor type, which emerge within the PTMomics area.


Assuntos
Glioma , Processamento de Proteína Pós-Traducional , Humanos , Glioma/genética
2.
Free Radic Biol Med ; 205: 188-201, 2023 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-37302617

RESUMO

Kidneys are pivotal organ in iron redistribution and can be severely damaged in the course of hemolysis. In our previous studies, we observed that induction of hypertension with angiotensin II (Ang II) combined with simvastatin administration results in a high mortality rate or the appearance of signs of kidney failure in heme oxygenase-1 knockout (HO-1 KO) mice. Here, we aimed to address the mechanisms underlying this effect, focusing on heme and iron metabolism. We show that HO-1 deficiency leads to iron accumulation in the renal cortex. Higher mortality of Ang II and simvastatin-treated HO-1 KO mice coincides with increased iron accumulation and the upregulation of mucin-1 in the proximal convoluted tubules. In vitro studies showed that mucin-1 hampers heme- and iron-related oxidative stress through the sialic acid residues. In parallel, knock-down of HO-1 induces the glutathione pathway in an NRF2-depedent manner, which likely protects against heme-induced toxicity. To sum up, we showed that heme degradation during heme overload is not solely dependent on HO-1 enzymatic activity, but can be modulated by the glutathione pathway. We also identified mucin-1 as a novel redox regulator. The results suggest that hypertensive patients with less active HMOX1 alleles may be at higher risk of kidney injury after statin treatment.


Assuntos
Heme Oxigenase-1 , Hipertensão , Camundongos , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Angiotensina II/metabolismo , Mucina-1/metabolismo , Heme Oxigenase (Desciclizante)/metabolismo , Sinvastatina/efeitos adversos , Sinvastatina/metabolismo , Rim/metabolismo , Ferro/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/metabolismo , Heme/metabolismo , Glutationa/metabolismo
4.
Nucleic Acids Res ; 50(16): 9051-9071, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018811

RESUMO

In mammals, m7G-adjacent nucleotides undergo extensive modifications. Ribose of the first or first and second transcribed nucleotides can be subjected to 2'-O-methylation to form cap1 or cap2, respectively. When the first transcribed nucleotide is 2'-O-methylated adenosine, it can be additionally modified to N6,2'-O-dimethyladenosine (m6Am). Recently, the crucial role of cap1 in distinguishing between 'self' and 'non-self' in mammalian cells during viral infection was revealed. Here, we attempted to understand the impact of cap methylations on RNA-related processes. Therefore, we synthesized tetranucleotide cap analogues and used them for RNA capping during in vitro transcription. Using this tool, we found that 2'-O-methylation of the second transcribed nucleotide within the mRNA 5' cap influences protein production levels in a cell-specific manner. This modification can strongly hamper protein biosynthesis or have no influence on protein production levels, depending on the cell line. Interestingly, 2'-O-methylation of the second transcribed nucleotide and the presence of m6Am as the first transcribed nucleotide serve as determinants that define transcripts as 'self' and contribute to transcript escape from the host innate immune response. Additionally, cap methylation status does not influence transcript affinity towards translation initiation factor eIF4E or in vitro susceptibility to decapping by DCP2; however, we observe the resistance of cap2-RNA to DXO (decapping exoribonuclease)-mediated decapping and degradation.


Assuntos
Nucleotídeos , Capuzes de RNA , Animais , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Nucleotídeos/metabolismo , Evasão da Resposta Imune , Mamíferos/genética
5.
Biochem Biophys Res Commun ; 621: 53-58, 2022 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-35810591

RESUMO

OBJECTIVES: Mechanisms behind disturbed fibrinolysis in pulmonary embolism (PE) are poorly understood. We hypothesized that oxidative stress-induced changes in plasminogen contribute to impaired fibrinolysis in patients with acute PE. METHODS: Oxidative and other modifications were investigated using mass-spectrometry in plasminogen purified from pooled plasma of 5 acute PE patients on admission and after 3 months of anticoagulant treatment, along with plasma clot lysis time, a measure of global efficiency of fibrinolysis, and a stable oxidative stress marker, plasma 8-isoprostane. RESULTS: Twenty sites of oxidation, 3 sites of carbonylation and 4 sites of S-nitrosylation were identified in plasminogen. The intensity of peptides oxidized at cysteine residues with respect to unmodified peptides decreased after 3 months of anticoagulation (p = 0.018). This was not observed for oxidized methionine residues (p = 0.9). Oxidized tryptophan (n = 4) and proline (n = 2), as well as carbonylation at 3 threonine residues were selectively identified in acute PE episode, not after 3 months. This was accompanied by 12.8% decrease in clot lysis time (p = 0.043). Deamidation occurred at the arginine, previously identified to undergo the cleavage by plasminogen activator. Methylated were two lysine-binding sites important for an interaction of plasminogen with fibrin. Other identified modifications involved: glycation, acetylation, phosphorylation, homocysteinylation, carbamylation and dichlorination (88 modifications at 162 sites). CONCLUSIONS: Data suggest that oxidative stress-induced changes in plasminogen molecules may contribute to less effective global fibrinolysis in patients with acute PE. The comprehensive library of posttranslational modifications in plasminogen molecules was provided, including modifications of sites reported to be involved in important biological functions.


Assuntos
Plasminogênio , Embolia Pulmonar , Fibrinólise , Humanos , Espectrometria de Massas , Estresse Oxidativo , Plasminogênio/metabolismo , Embolia Pulmonar/complicações , Ativador de Plasminogênio Tecidual/metabolismo
6.
EMBO J ; 41(15): e109566, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762422

RESUMO

CHIP (C-terminus of Hsc70-interacting protein) and its worm ortholog CHN-1 are E3 ubiquitin ligases that link the chaperone system with the ubiquitin-proteasome system (UPS). CHN-1 can cooperate with UFD-2, another E3 ligase, to accelerate ubiquitin chain formation; however, the basis for the high processivity of this E3s set has remained obscure. Here, we studied the molecular mechanism and function of the CHN-1-UFD-2 complex in Caenorhabditis elegans. Our data show that UFD-2 binding promotes the cooperation between CHN-1 and ubiquitin-conjugating E2 enzymes by stabilizing the CHN-1 U-box dimer. However, HSP70/HSP-1 chaperone outcompetes UFD-2 for CHN-1 binding, thereby promoting a shift to the autoinhibited CHN-1 state by acting on a conserved residue in its U-box domain. The interaction with UFD-2 enables CHN-1 to efficiently ubiquitylate and regulate S-adenosylhomocysteinase (AHCY-1), a key enzyme in the S-adenosylmethionine (SAM) regeneration cycle, which is essential for SAM-dependent methylation. Our results define the molecular mechanism underlying the synergistic cooperation of CHN-1 and UFD-2 in substrate ubiquitylation.


Assuntos
Proteínas de Caenorhabditis elegans , Ubiquitina , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Biomedicines ; 10(4)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35453484

RESUMO

Many potential biomarkers in nephrology have been studied, but few are currently used in clinical practice. One is osteopontin (OPN). We compared urinary OPN concentrations in 80 participants: 67 patients with various biopsy-proven glomerulopathies (GNs)-immunoglobulin A nephropathy (IgAN, 29), membranous nephropathy (MN, 20) and lupus nephritis (LN, 18) and 13 with no GN. Follow-up included 48 participants. Machine learning was used to correlate OPN with other factors to classify patients by GN type. The resulting algorithm had an accuracy of 87% in differentiating IgAN from other GNs using urinary OPN levels only. A lesser effect for discriminating MN and LN was observed. However, the lower number of patients and the phenotypic heterogeneity of MN and LN might have affected those results. OPN was significantly higher in IgAN at baseline than in other GNs and therefore might be useful for identifying patients with IgAN. That observation did not apply to either patients with IgAN at follow-up or to patients with other GNs. OPN seems to be a valuable biomarker and should be validated in future studies. Machine learning is a powerful tool that, compared with traditional statistical methods, can be also applied to smaller datasets.

8.
Int J Mol Sci ; 23(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35456936

RESUMO

Photodynamic therapy (PDT) is a valuable treatment method for vulvar intraepithelial neoplasia (VIN). It allows for the treatment of a multifocal disease with minimal tissue destruction. 5-Aminolevulinic acid (5-ALA) is the most commonly used prodrug, which is converted in the heme pathway to protoporphyrin IX (PpIX), an actual photosensitizer (PS). Unfortunately, not all patients treated with PDT undergo complete remission. The main cause of their failure is resistance to anticancer therapy. In many cancers, resistance to various anticancer treatments is correlated with increased activity of the DNA repair protein apurinic/apyrimidinic endonuclease 1 (APE1). Enhanced activity of drug pumps may also affect the effectiveness of therapy. To investigate whether multidrug resistance mechanisms underlie PDT resistance in VIN, porphyrins were isolated from sensitive and resistant vulvar cancer cells and their culture media. APE1 activity was measured, and survival assay after PDT combined with APE1 inhibitor was performed. Our results revealed that resistant cells accumulated and effluxed less porphyrins than sensitive cells, and in response to PDT, resistant cells increased APE1 activity. Moreover, PDT combined with inhibition of APE1 significantly decreased the survival of PDT-resistant cells. This means that resistance to PDT in vulvar cancer may be the result of alterations in the heme synthesis pathway. Moreover, increased APE1 activity may be essential for the repair of PDT-mediated DNA damage, and inhibition of APE1 activity may increase the efficacy of PDT.


Assuntos
Fotoquimioterapia , Neoplasias Vulvares , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Feminino , Heme/uso terapêutico , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Protoporfirinas/uso terapêutico , Neoplasias Vulvares/tratamento farmacológico
9.
Blood Adv ; 6(6): 1879-1894, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35130345

RESUMO

Chronic and acute myeloid leukemia evade immune system surveillance and induce immunosuppression by expanding proleukemic Foxp3+ regulatory T cells (Tregs). High levels of immunosuppressive Tregs predict inferior response to chemotherapy, leukemia relapse, and shorter survival. However, mechanisms that promote Tregs in myeloid leukemias remain largely unexplored. Here, we identify leukemic extracellular vesicles (EVs) as drivers of effector proleukemic Tregs. Using mouse model of leukemia-like disease, we found that Rab27a-dependent secretion of leukemic EVs promoted leukemia engraftment, which was associated with higher abundance of activated, immunosuppressive Tregs. Leukemic EVs attenuated mTOR-S6 and activated STAT5 signaling, as well as evoked significant transcriptomic changes in Tregs. We further identified specific effector signature of Tregs promoted by leukemic EVs. Leukemic EVs-driven Tregs were characterized by elevated expression of effector/tumor Treg markers CD39, CCR8, CD30, TNFR2, CCR4, TIGIT, and IL21R and included 2 distinct effector Treg (eTreg) subsets: CD30+CCR8hiTNFR2hi eTreg1 and CD39+TIGIThi eTreg2. Finally, we showed that costimulatory ligand 4-1BBL/CD137L, shuttled by leukemic EVs, promoted suppressive activity and effector phenotype of Tregs by regulating expression of receptors such as CD30 and TNFR2. Collectively, our work highlights the role of leukemic extracellular vesicles in stimulation of immunosuppressive Tregs and leukemia growth. We postulate that targeting of Rab27a-dependent secretion of leukemic EVs may be a viable therapeutic approach in myeloid neoplasms.


Assuntos
Ligante 4-1BB/imunologia , Vesículas Extracelulares , Leucemia Mieloide Aguda , Animais , Vesículas Extracelulares/metabolismo , Imunossupressores/uso terapêutico , Antígeno Ki-1/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores
10.
Artigo em Inglês | MEDLINE | ID: mdl-34822977

RESUMO

Lipid droplets (LDs) are common organelles observed in Eucaryota. They are multifunctional organelles (involved in lipid storage, metabolism, and trafficking) that originate from endoplasmic reticulum (ER). LDs consist of a neutral lipid core, made up of diacyl- and triacylglycerols (DAGs and TAGs) and cholesterol esters (CEs), surrounded by a phospholipid monolayer and proteins, which are necessary for their structure and dynamics. Here, we report the protein and lipid composition as well as characterization and dynamics of grass snake (Natrix natrix) skeletal muscle LDs at different developmental stages. In the present study, we used detailed morphometric, LC-MS, quantitative lipidomic analyses of LDs isolated from the skeletal muscles of the snake embryos, immunofluorescence, and TEM. Our study also provides a valuable insight concerning the LDs' multifunctionality and ability to interact with a variety of organelles. These LD features are reflected in their proteome composition, which contains scaffold proteins, metabolic enzymes signalling polypeptides, proteins necessary for the formation of docking sites, and many others. We also provide insights into the biogenesis and growth of muscle LDs goes beyond the conventional mechanism based on the synthesis and incorporation of TAGs and LD fusion. We assume that the formation and functioning of grass snake muscle LDs are based on additional mechanisms that have not yet been identified, which could be related to the unique features of reptiles that are manifested in the after-hatching period of life, such as a reptile-specific strategy for energy saving during hibernation.


Assuntos
Gotículas Lipídicas
11.
Nanotechnol Sci Appl ; 14: 115-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511890

RESUMO

PURPOSE: Surgical resection of hepatocellular carcinoma can be associated with recurrence resulting from the degeneration of residual volume of the liver. The objective was to assess the possibility of using a biocompatible nanofilm, made of a colloid of diamond nanoparticles (nfND), to fill the side after tumour resection and optimize its contact with proliferating liver cells, minimizing their cancerous transformation. METHODS: HepG2 and C3A liver cancer cells and HS-5 non-cancer cells were used. An aqueous colloid of diamond nanoparticles, which covered the cell culture plate, was used to create the nanofilm. The roughness of the resulting nanofilm was measured by atomic force microscopy. Mitochondrial activity and cell proliferation were measured by XTT and BrdU assays. Cell morphology and a scratch test were used to evaluate the invasiveness of cells. Flow cytometry determined the number of cells within the cell cycle. Protein expression in was measured by mass spectrometry. RESULTS: The nfND created a surface with increased roughness and exposed oxygen groups compared with a standard plate. All cell lines were prone to settling on the nanofilm, but cancer cells formed more relaxed clusters. The surface compatibility was dependent on the cell type and decreased in the order C3A >HepG2 >HS-5. The invasion was reduced in cancer lines with the greatest effect on the C3A line, reducing proliferation and increasing the G2/M cell population. Among the proteins with altered expression, membrane and nuclear proteins dominated. CONCLUSION: In vitro studies demonstrated the antiproliferative properties of nfND against C3A liver cancer cells. At the same time, the need to personalize potential therapy was indicated due to the differential protein synthetic responses in C3A vs HepG2 cells. We documented that nfND is a source of signals capable of normalizing the expression of many intracellular proteins involved in the transformation to non-cancerous cells.

12.
Cell Rep ; 35(3): 109015, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33882302

RESUMO

Osteoblasts orchestrate bone formation through the secretion of type I collagen and other constituents of the matrix on which hydroxyapatite crystals mineralize. Here, we show that TENT5A, whose mutations were found in congenital bone disease osteogenesis imperfecta patients, is a cytoplasmic poly(A) polymerase playing a crucial role in regulating bone mineralization. Direct RNA sequencing revealed that TENT5A is induced during osteoblast differentiation and polyadenylates mRNAs encoding Col1α1, Col1α2, and other secreted proteins involved in osteogenesis, increasing their expression. We postulate that TENT5A, possibly together with its paralog TENT5C, is responsible for the wave of cytoplasmic polyadenylation of mRNAs encoding secreted proteins occurring during bone mineralization. Importantly, the Tent5a knockout (KO) mouse line displays bone fragility and skeletal hypomineralization phenotype resulting from quantitative and qualitative collagen defects. Thus, we report a biologically relevant posttranscriptional regulator of collagen production and, more generally, bone formation.


Assuntos
Calcificação Fisiológica/genética , Osteoblastos/metabolismo , Osteogênese Imperfeita/genética , Osteogênese/genética , Polinucleotídeo Adenililtransferase/genética , RNA Mensageiro/genética , Animais , Diferenciação Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Modelos Animais de Doenças , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Masculino , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Osteoblastos/patologia , Osteogênese Imperfeita/metabolismo , Osteogênese Imperfeita/patologia , Osteonectina/genética , Osteonectina/metabolismo , Poliadenilação , Polinucleotídeo Adenililtransferase/metabolismo , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , RNA Mensageiro/metabolismo , Análise de Sequência de RNA , Serpinas/genética , Serpinas/metabolismo , Transdução de Sinais
13.
Cell Death Dis ; 10(11): 817, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659149

RESUMO

Intercellular communication within the bone marrow niche significantly promotes leukemogenesis and provides protection of leukemic cells from therapy. Secreted factors, intercellular transfer of mitochondria and the receptor-ligand interactions have been shown as mediators of this protection. Here we report that tunneling nanotubes (TNTs)-long, thin membranous structures, which have been identified as a novel mode of intercellular cross-talk-are formed in the presence of stroma and mediate transfer of cellular vesicles from stroma to leukemic cells. Importantly, transmission of vesicles via TNTs from stromal cells increases resistance of leukemic cells to the tyrosine kinase inhibitor, imatinib. Using correlative light-electron microscopy and electron tomography we show that stromal TNTs contain vesicles, provide membrane continuity with the cell bodies and can be open-ended. Moreover, trans-SILAC studies to reveal the non-autonomous proteome showed that specific sets of proteins are transferred together with cellular vesicles from stromal to leukemic cells, with a potential role in survival and adaptation. Altogether, our findings provide evidence for the biological role of the TNT-mediated vesicle exchange between stromal and leukemic cells, implicating the direct vesicle and protein transfer in the stroma-provided protection of leukemic cells.


Assuntos
Mesilato de Imatinib/farmacologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Mitocôndrias/genética , Nanotubos/química , Transporte Biológico/genética , Comunicação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Mesilato de Imatinib/química , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Microscopia Eletrônica , Mitocôndrias/efeitos dos fármacos , Células Estromais/efeitos dos fármacos , Células Estromais/ultraestrutura
14.
Biochem Biophys Res Commun ; 513(2): 368-373, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30961929

RESUMO

Dihydrofolate reductase (DHFR) is a prominent molecular target in antitumor, antibacterial, antiprotozoan, and immunosuppressive chemotherapies, and CK2 protein kinase is an ubiquitous enzyme involved in many processes, such as tRNA and rRNA synthesis, apoptosis, cell cycle or oncogenic transformation. We show for the first time that CK2α subunit strongly interacted with and phosphorylated DHFR in vitro. Using quartz crystal microbalance with dissipation monitoring (QCM-D) we determined DHFR-CK2α binding kinetic parameters (Kd below 0.5 µM, kon = 10.31 × 104 M-1s-1 and koff = 1.40 × 10-3s-1) and calculated Gibbs free energy (-36.4 kJ/mol). In order to identify phosphorylation site(s) we used site-directed mutagenesis to obtain several DHFR mutants with predicted CK2-phosphorylable serine or threonine residues substituted with alanines. All enzyme forms were subjected to CK2α subunit catalytic activity and the results pointed to serine 168 as a phosphorylation site. Mass spectrometry analyses confirmed the presence of phosphoserine 168 and revealed additionally the presence of phosphoserine 145, although the latter phosphorylation was on a very low level.


Assuntos
Tetra-Hidrofolato Desidrogenase/metabolismo , Caseína Quinase II/química , Caseína Quinase II/metabolismo , Domínio Catalítico , Humanos , Cinética , Fosforilação , Ligação Proteica , Mapas de Interação de Proteínas , Especificidade por Substrato
15.
Antioxid Redox Signal ; 30(14): 1709-1730, 2019 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-30198307

RESUMO

AIMS: Nrf2 (nuclear factor erythroid 2-like 2) is a transcription factor known to modulate blood vessel formation. Various experimental settings, however, attribute to Nrf2 either stimulatory or repressive influence on angiogenesis. Our findings unveil the mechanism of Nrf2-dependent vessel formation, which reaches beyond transactivation of gene expression and reconciles previous discrepancies. RESULTS: We provide evidence that growth differentiation factor 15 (GDF-15)- and stromal cell-derived factor 1 (SDF-1)-induced angiogenesis strongly depends on the presence of Nrf2 protein but does not rely on its transcriptional activity. Instead, Nrf2 serves as a protein restraining Keap1 (Kelch-like ECH-associated protein 1), its known transcriptional repressor. Angiogenic response is abrogated in Nrf2-deficient endothelial cells but not in cells expressing dominant negative form or Keap1-binding fragment of Nrf2. Deficiency of Nrf2 protein available for Keap1 leads to the overabundance of RhoGAP1 (Rho GTPase-activating protein 1), the protein regulating cell division cycle 42 (Cdc42) activity. This impairs podosome assembly and disrupts actin rearrangements, thereby preventing angiogenesis. Effects of Nrf2 deficiency can be rescued by concomitant knockdown of RhoGAP1 or Keap1. Importantly, in the established murine model of Nrf2 deficiency, the N-terminal fragment of Nrf2 containing Keap1 binding domain is preserved. Thus, this model can be used to characterize Nrf2 as a transcription factor, but not as a Keap1-sequestering protein. Innovation and Conclusion: To date, the significance of Nrf2 in cell function has been ascribed solely to the regulation of transcription. We demonstrate that Nrf2 serves as a protein tethering Keap1 to allow podosome assembly and angiogenesis. Moreover, we emphasize that the new Nrf2 function of a Keap1 scavenger implies revisiting the interpretation of some of the previous data on the Nrf2-Keap1 system.


Assuntos
Células Endoteliais/metabolismo , Endotélio/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Podossomos/metabolismo , Actinas/metabolismo , Animais , Células Cultivadas , Senescência Celular , Quimiocina CXCL12 , Células Endoteliais/efeitos dos fármacos , Fator 15 de Diferenciação de Crescimento/farmacologia , Sequenciamento de Nucleotídeos em Larga Escala , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Camundongos , Camundongos Knockout , MicroRNAs , Modelos Biológicos , Fator 2 Relacionado a NF-E2/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Podossomos/efeitos dos fármacos , Podossomos/genética , Transcrição Gênica
16.
Mol Cell Oncol ; 5(6): e1516452, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30525095

RESUMO

Transcription of the human mitochondrial genome produces a vast amount of non-coding antisense RNAs. These RNA species can form G-quadraplexes (G4), which affect their decay. We found that the mitochondrial degradosome, a complex of RNA helicase SUPV3L1 (best known as SUV3) and the ribonuclease PNPT1 (also known as PNPase), together with G4-melting protein GRSF1, is a key player in restricting antisense mtRNAs.

17.
Nat Commun ; 8(1): 619, 2017 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-28931820

RESUMO

FAM46C is one of the most frequently mutated genes in multiple myeloma. Here, using a combination of in vitro and in vivo approaches, we demonstrate that FAM46C encodes an active non-canonical poly(A) polymerase which enhances mRNA stability and gene expression. Reintroduction of active FAM46C into multiple myeloma cell lines, but not its catalytically-inactive mutant, leads to broad polyadenylation and stabilization of mRNAs strongly enriched with those encoding endoplasmic reticulum-targeted proteins and induces cell death. Moreover, silencing of FAM46C in multiple myeloma cells expressing WT protein enhance cell proliferation. Finally, using a FAM46C-FLAG knock-in mouse strain, we show that the FAM46C protein is strongly induced during activation of primary splenocytes and that B lymphocytes isolated from newly generated FAM46C KO mice proliferate faster than those isolated from their WT littermates. Concluding, our data clearly indicate that FAM46C works as an onco-suppressor, with the specificity for B-lymphocyte lineage from which multiple myeloma originates. FAM46C is one of the most frequently mutated genes in multiple myeloma (MM), but its molecular function remains unknown. Here the authors show that FAM46C is a poly(A) polymerase and that loss of function of FAM46C drives multiple myeloma through the destabilisation of ER response transcripts.


Assuntos
Mieloma Múltiplo/genética , Polinucleotídeo Adenililtransferase/genética , Proteínas/genética , Estabilidade de RNA/genética , RNA Mensageiro/metabolismo , Animais , Linfócitos B , Morte Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Retículo Endoplasmático/metabolismo , Expressão Gênica , Técnicas de Introdução de Genes , Inativação Gênica , Humanos , Técnicas In Vitro , Camundongos , Camundongos Knockout , Mutação , Nucleotidiltransferases , Baço/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA