Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biol Chem ; 401(4): 497-503, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31702995

RESUMO

Impaired energy metabolism may play a role in the pathogenesis of neurodevelopmental disorders including fragile X syndrome (FXS). We checked brain energy status and some aspects of cell bioenergetics, namely the activity of key glycolytic enzymes, glycerol-3-phosphate shuttle and mitochondrial respiratory chain (MRC) complexes, in the cerebral cortex of the Fmr1 knockout (KO) mouse model of FXS. We found that, despite a hyperactivation of MRC complexes, adenosine triphosphate (ATP) production via mitochondrial oxidative phosphorylation (OXPHOS) is compromised, resulting in brain energy impairment in juvenile and late-adult Fmr1 KO mice. Thus, an altered mitochondrial energy metabolism may contribute to neurological impairment in FXS.


Assuntos
Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Mitocôndrias/metabolismo , Animais , Córtex Cerebral/patologia , Síndrome do Cromossomo X Frágil/patologia , Camundongos , Camundongos Knockout
2.
Front Mol Neurosci ; 11: 353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333723

RESUMO

We have previously demonstrated that activation of serotonin 5-HT7 receptors (5-HT7R) reverses metabotropic glutamate receptor-mediated long term depression (mGluR-LTD) in the hippocampus of wild-type (WT) and Fmr1 Knockout (KO) mice, a model of Fragile X Syndrome (FXS) in which mGluR-LTD is abnormally enhanced. Here, we have investigated intracellular mechanisms underlying the effect of 5-HT7R activation using patch clamp on hippocampal slices. Furthermore, we have tested whether in vivo administration of LP-211, a selective 5-HT7R agonist, can rescue learning and behavior in Fmr1 KO mice. In the presence of an adenylate cyclase blocker, mGluR-LTD was slightly enhanced in WT and therefore the difference between mGluR-LTD in WT and Fmr1 KO slices was no longer present. Conversely, activation of adenylate cyclase by either forskolin or Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) completely reversed mGluR-LTD in WT and Fmr1 KO. 5-HT7R activation reversed mGluR-LTD in WT and corrected exaggerated mGluR-LTD in Fmr1 KO; this effect was abolished by blockade of either adenylate cyclase or protein kinase A (PKA). Exposure of hippocampal slices to LP-211 caused an increased phosphorylation of extracellular signal regulated kinase (ERK), an intracellular effector involved in mGluR-LTD, in WT mice. Conversely, this effect was barely detectable in Fmr1 KO mice, suggesting that 5-HT7R-mediated reversal of mGluR-LTD does not require ERK stimulation. Finally, an acute in vivo administration of LP-211 improved novel object recognition (NOR) performance in WT and Fmr1 KO mice and reduced stereotyped behavior in Fmr1 KO mice. Our results indicate that mGluR-LTD in WT and Fmr1 KO slices is bidirectionally modulated in conditions of either reduced or enhanced cAMP formation. Activation of 5-HT7 receptors reverses mGluR-LTD by activation of the cAMP/PKA intracellular pathway. Importantly, a systemic administration of a 5-HT7R agonist to Fmr1 KO mice corrected learning deficits and repetitive behavior. We suggest that selective 5-HT7R agonists might become novel pharmacological tools for FXS therapy.

3.
Neuro Oncol ; 16(2): 204-16, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24305720

RESUMO

Background Notch signaling is deregulated in human gliomas and may play a role in their malignancy. However, the role of each Notch receptor in glioma cell differentiation and progression is not clear. We examined the expression pattern of Notch receptors and compared it with differentiation markers in glioma cell lines, primary human cultures, and biopsies of different grades. Furthermore, the effects of a γ-secretase inhibitor (GSI) on cell survival were assessed. Methods Notch receptors and markers of cellular differentiation were analyzed by reverse transcriptase PCR, Western blotting, immunohistochemistry, and immunocytochemistry. GSI sensitivity was assessed in both cell lines and primary cultures grown as monolayers or tumorspheres, by MTT assay. Results In cell lines, Notch1 and Notch2/4 levels paralleled those of glial fibrillary acidic protein (GFAP) and vimentin, respectively. In human gliomas and primary cultures, Notch1 was moderate/strong in low-grade tumors but weak in glioblastoma multiforme (GBM). Conversely, Notch4 increased from astrocytoma grade II to GBM. Primary GBM cultures grown in serum (monolayer) showed moderate/high levels of CD133, nestin, vimentin, and Notch4 and very low levels of GFAP and Notch1, which were reduced in tumorspheres. This effect was drastic for Notch4. GSI reduced cell survival with stronger effect in serum, whilst human primary cultures showed different sensitivity. Conclusion Data from cell lines and human gliomas suggest a correlation between expression of Notch receptors and cell differentiation. Namely, Notch1 and Notch4 are markers of differentiated and less differentiated glioma cells, respectively. We propose Notch receptors as markers of glioma grading and possible prognostic factors.


Assuntos
Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Glioma/metabolismo , Receptores Notch/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Animais , Apoptose , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Biomarcadores Tumorais/genética , Western Blotting , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Proliferação de Células , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Glioma/tratamento farmacológico , Glioma/patologia , Humanos , Técnicas Imunoenzimáticas , Gradação de Tumores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptor Notch3 , Receptor Notch4 , Receptores Notch/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
4.
Mol Neurobiol ; 35(3): 298-307, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17917118

RESUMO

Group I metabotropic glutamate receptors (mGlu1 and mGlu5) are coupled to polyphosphoinositide hydrolysis and are involved in activity-dependent forms of synaptic plasticity, both during development and in the adult life. Group I mGlu receptors can also regulate proliferation, differentiation, and survival of neural stem/progenitor cells, which further support their role in brain development. An exaggerated response to activation of mGlu5 receptors may underlie synaptic dysfunction in Fragile X syndrome, the most common inherited form of mental retardation. In addition, group I mGlu receptors are overexpressed in dysplastic neurons of focal cortical dysplasia and hemimegaloencephaly, which are disorders of cortical development associated with chronic epilepsy. Drugs that block the activity of group I mGlu receptors (in particular, mGlu5 receptors) are potentially helpful for the treatment of Fragile X syndrome and perhaps other neurodevelopmental disorders.


Assuntos
Córtex Cerebral , Síndrome do Cromossomo X Frágil/metabolismo , Malformações do Desenvolvimento Cortical/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Córtex Cerebral/anormalidades , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Humanos , Receptor de Glutamato Metabotrópico 5 , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA