Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35380993

RESUMO

PRAME is a prominent member of the cancer testis antigen family of proteins, which triggers autologous T cell-mediated immune responses. Integrative genomic analysis in diffuse large B cell lymphoma (DLBCL) uncovered recurrent and highly focal deletions of 22q11.22, including the PRAME gene, which were associated with poor outcome. PRAME-deleted tumors showed cytotoxic T cell immune escape and were associated with cold tumor microenvironments. In addition, PRAME downmodulation was strongly associated with somatic EZH2 Y641 mutations in DLBCL. In turn, PRC2-regulated genes were repressed in isogenic PRAME-KO lymphoma cell lines, and PRAME was found to directly interact with EZH2 as a negative regulator. EZH2 inhibition with EPZ-6438 abrogated these extrinsic and intrinsic effects, leading to PRAME expression and microenvironment restoration in vivo. Our data highlight multiple functions of PRAME during lymphomagenesis and provide a preclinical rationale for synergistic therapies combining epigenetic reprogramming with PRAME-targeted therapies.


Assuntos
Antígenos de Neoplasias , Linfoma Difuso de Grandes Células B , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/terapia , Microambiente Tumoral/genética
2.
Front Oncol ; 3: 194, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23898463

RESUMO

PHYSICAL ONCOLOGY IS A GROWING FORCE IN CANCER RESEARCH, AND IT IS ENHANCED BY INTEGRATIVE COMPUTATIONAL ONCOLOGY: the fusion of novel experiments with mathematical and computational modeling. Computational models must be assessed with accurate numerical methods on correctly scaled tissues to avoid numerical artifacts that can cloud analysis. Simulation-driven analyses can only be validated by careful experiments. In this perspectives piece, we evaluate a current, widespread model of matrix metalloproteinase-driven tissue degradation during cancer invasion to illustrate that integrative computational oncology may not realize its fullest potential if either of these critical steps is neglected.

3.
Math Biosci Eng ; 10(1): 75-101, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23311363

RESUMO

The basement membrane (BM) and extracellular matrix (ECM) play critical roles in developmental and cancer biology, and are of great interest in biomathematics. We introduce a model of mechanical cell-BM-ECM interactions that extends current (visco)elastic models (e.g. [8,16]), and connects to recent agent-based cell models (e.g. [2,3,20,26]). We model the BM as a linked series of Hookean springs, each with time-varying length, thickness, and spring constant. Each BM spring node exchanges adhesive and repulsive forces with the cell agents using potential functions. We model elastic BM-ECM interactions with analogous ECM springs. We introduce a new model of plastic BM and ECM reorganization in response to prolonged strains, and new constitutive relations that incorporate molecular-scale effects of plasticity into the spring constants. We find that varying the balance of BM and ECM elasticity alters the node spacing along cell boundaries, yielding a nonuniform BM thickness. Uneven node spacing generates stresses that are relieved by plasticity over long times. We find that elasto-viscoplastic cell shape response is critical to relieving uneven stresses in the BM. Our modeling advances and results highlight the importance of rigorously modeling of cell-BM-ECM interactions in clinically important conditions with significant membrane deformations and time-varying membrane properties, such as aneurysms and progression from in situ to invasive carcinoma.


Assuntos
Membrana Basal/fisiologia , Forma Celular , Matriz Extracelular/fisiologia , Modelos Biológicos , Algoritmos , Calibragem , Adesão Celular , Células Cultivadas , Simulação por Computador , Elasticidade , Epitélio/patologia , Proteínas da Matriz Extracelular/metabolismo , Humanos , Ligantes , Neoplasias/metabolismo , Neoplasias/patologia , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA