Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cancers (Basel) ; 15(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37296972

RESUMO

Immunotherapy is a cancer treatment that exploits the capacity of the body's immune system to prevent, control, and remove cancer. Immunotherapy has revolutionized cancer treatment and significantly improved patient outcomes for several tumor types. However, most patients have not benefited from such therapies yet. Within the field of cancer immunotherapy, an expansion of the combination strategy that targets independent cellular pathways that can work synergistically is predicted. Here, we review some consequences of tumor cell death and increased immune system engagement in the modulation of oxidative stress and ubiquitin ligase pathways. We also indicate combinations of cancer immunotherapies and immunomodulatory targets. Additionally, we discuss imaging techniques, which are crucial for monitoring tumor responses during treatment and the immunotherapy side effects. Finally, the major outstanding questions are also presented, and directions for future research are described.

2.
Cancers (Basel) ; 15(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36672361

RESUMO

Ovarian cancer is a highly lethal gynecological malignancy. Drug resistance rapidly occurs, and different therapeutic approaches are needed. So far, no biomarkers have been discovered to predict early response to therapies in the case of multi-treated ovarian cancer patients. The aim of our investigation was to identify a protein panel and the molecular pathways involved in chemotherapy response through a combination of studying proteomics and network enrichment analysis by considering a subset of samples from a clinical setting. Differential mass spectrometry studies were performed on 14 serum samples from patients with heavily pretreated platinum-resistant ovarian cancer who received the FOLFOX-4 regimen as a salvage therapy. The serum was analyzed at baseline time (T0) before FOLFOX-4 treatment, and before the second cycle of treatment (T1), with the aim of understanding if it was possible, after a first treatment cycle, to detect significant proteome changes that could be associated with patients responses to therapy. A total of 291 shared expressed proteins was identified and 12 proteins were finally selected between patients who attained partial response or no-response to chemotherapy when both response to therapy and time dependence (T0, T1) were considered in the statistical analysis. The protein panel included APOL1, GSN, GFI1, LCATL, MNA, LYVE1, ROR1, SHBG, SOD3, TEC, VPS18, and ZNF573. Using a bioinformatics network enrichment approach and metanalysis study, relationships between serum and cellular proteins were identified. An analysis of protein networks was conducted and identified at least three biological processes with functional and therapeutic significance in ovarian cancer, including lipoproteins metabolic process, structural component modulation in relation to cellular apoptosis and autophagy, and cellular oxidative stress response. Five proteins were almost independent from the network (LYVE1, ROR1, TEC, GFI1, and ZNF573). All proteins were associated with response to drug-resistant ovarian cancer resistant and were mechanistically connected to the pathways associated with cancer arrest. These results can be the basis for extending a biomarker discovery process to a clinical trial, as an early predictive tool of chemo-response to FOLFOX-4 of heavily treated ovarian cancer patients and for supporting the oncologist to continue or to interrupt the therapy.

3.
Elife ; 112022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36475542

RESUMO

Drugs that target human thymidylate synthase (hTS), a dimeric enzyme, are widely used in anticancer therapy. However, treatment with classical substrate-site-directed TS inhibitors induces over-expression of this protein and development of drug resistance. We thus pursued an alternative strategy that led us to the discovery of TS-dimer destabilizers. These compounds bind at the monomer-monomer interface and shift the dimerization equilibrium of both the recombinant and the intracellular protein toward the inactive monomers. A structural, spectroscopic, and kinetic investigation has provided evidence and quantitative information on the effects of the interaction of these small molecules with hTS. Focusing on the best among them, E7, we have shown that it inhibits hTS in cancer cells and accelerates its proteasomal degradation, thus causing a decrease in the enzyme intracellular level. E7 also showed a superior anticancer profile to fluorouracil in a mouse model of human pancreatic and ovarian cancer. Thus, over sixty years after the discovery of the first TS prodrug inhibitor, fluorouracil, E7 breaks the link between TS inhibition and enhanced expression in response, providing a strategy to fight drug-resistant cancers.


Assuntos
Neoplasias Ovarianas , Timidilato Sintase , Feminino , Animais , Camundongos , Humanos , Sítios de Ligação , Timidilato Sintase/química , Timidilato Sintase/metabolismo , Fluoruracila/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia
4.
Biomedicines ; 10(7)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35884905

RESUMO

Recently, we highlighted a novel role for the protein Trichoplein/TCHP/Mitostatin (TpMs), both as mitotic checkpoint regulator and guardian of chromosomal stability. TpMs-depleted cells show numerical and structural chromosome alterations that lead to genomic instability. This condition is a major driving force in malignant transformation as it allows for the cells acquiring new functional capabilities to proliferate and disseminate. Here, the effect of TpMs depletion was investigated in different TpMs-depleted cell lines by means of 3D imaging and 3D Structured illumination Microscopy. We show that TpMs depletion causes alterations in the 3D architecture of telomeres in colon cancer HCT116 cells. These findings are consistent with chromosome alterations that lead to genomic instability. Furthermore, TpMs depletion changes the spatial arrangement of chromosomes and other nuclear components. Modified nuclear architecture and organization potentially induce variations that precede the onset of genomic instability and are considered as markers of malignant transformation. Our present observations connect the tumor suppression ability of TpMs with its novel functions in maintaining the proper chromosomal segregation as well as the proper telomere and nuclear architecture. Further investigations will investigate the connection between alterations in telomeres and nuclear architecture with the progression of human tumors with the aim of developing personalized therapeutic interventions.

5.
Pharmaceutics ; 14(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214125

RESUMO

The transcriptional regulators YAP (Yes-associated protein) and TAZ (transcriptional co-activator with PDZ-binding motif) are the major downstream effectors in the Hippo pathway and are involved in cancer progression through modulation of the activity of TEAD (transcriptional enhanced associate domain) transcription factors. To exploit the advantages of drug repurposing in the search of new drugs, we developed a similar approach for the identification of new hits interfering with TEAD target gene expression. In our study, a 27-member in-house library was assembled, characterized, and screened for its cancer cell growth inhibition effect. In a secondary luciferase-based assay, only seven compounds confirmed their specific involvement in TEAD activity. IA5 bearing a p-quinoid structure reduced the cytoplasmic level of phosphorylated YAP and the YAP-TEAD complex transcriptional activity and reduced cancer cell growth. IA5 is a promising hit compound for TEAD activity modulator development.

6.
Cancers (Basel) ; 13(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923290

RESUMO

Combining drugs represent an approach to efficiently prevent and overcome drug resistance and to reduce toxicity; yet it is a highly challenging task, particularly if combinations of inhibitors of the same enzyme target are considered. To show that crystallographic and inhibition kinetic information can provide indicators of cancer cell growth inhibition by combinations of two anti-human thymidylate synthase (hTS) drugs, we obtained the X-ray crystal structure of the hTS:raltitrexed:5-fluorodeoxyuridine monophosphate (FdUMP) complex. Its analysis showed a ternary complex with both molecules strongly bound inside the enzyme catalytic cavity. The synergistic inhibition of hTS and its mechanistic rationale were consistent with the structural analysis. When administered in combination to A2780 and A2780/CP ovarian cancer cells, the two drugs inhibited ovarian cancer cell growth additively/synergistically. Together, these results support the idea that X-ray crystallography can provide structural indicators for designing combinations of hTS (or any other target)-directed drugs to accelerate preclinical research for therapeutic application.

7.
J Med Chem ; 64(6): 3204-3221, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33710891

RESUMO

Drug-target interaction, cellular internalization, and target engagement should be addressed to design a lead with high chances of success in further optimization stages. Accordingly, we have designed conjugates of folic acid with anticancer peptides able to bind human thymidylate synthase (hTS) and enter cancer cells through folate receptor α (FRα) highly expressed by several cancer cells. Mechanistic analyses and molecular modeling simulations have shown that these conjugates bind the hTS monomer-monomer interface with affinities over 20 times larger than the enzyme active site. When tested on several cancer cell models, these conjugates exhibited FRα selectivity at nanomolar concentrations. A similar selectivity was observed when the conjugates were delivered in synergistic or additive combinations with anticancer agents. At variance with 5-fluorouracil and other anticancer drugs that target the hTS catalytic pocket, these conjugates do not induce overexpression of this protein and can thus help combating drug resistance associated with high hTS levels.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Ácido Fólico/análogos & derivados , Peptídeos/química , Peptídeos/farmacologia , Timidilato Sintase/antagonistas & inibidores , Antineoplásicos/farmacocinética , Domínio Catalítico/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Feminino , Receptor 1 de Folato/metabolismo , Ácido Fólico/farmacocinética , Ácido Fólico/farmacologia , Humanos , Modelos Moleculares , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Peptídeos/farmacocinética , Timidilato Sintase/metabolismo
8.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585842

RESUMO

There is currently no effective long-term treatment for ovarian cancer (OC) resistant to poly-chemotherapy regimens based on platinum drugs. Preclinical and clinical studies have demonstrated a strong association between development of Pt-drug resistance and increased thymidylate synthase (hTS) expression, and the consequent cross-resistance to the hTS inhibitors 5-fluorouracil (5-FU) and raltitrexed (RTX). In the present work, we propose a new tool to combat drug resistance. We propose to treat OC cell lines, both Pt-sensitive and -resistant, with dual combinations of one of the four chemotherapeutic agents that are widely used in the clinic, and the new peptide, hTS inhibitor, [D-Gln4]LR. This binds hTS allosterically and, unlike classical inhibitors that bind at the catalytic pocket, causes cell growth inhibition without inducing hTS overexpression. The dual drug combinations showed schedule-dependent synergistic antiproliferative and apoptotic effects. We observed that the simultaneous treatment or 24h pre-treatment of OC cells with the peptide followed by either agent produced synergistic effects even in resistant cells. Similar synergistic or antagonistic effects were obtained by delivering the peptide into OC cells either by means of a commercial delivery system (SAINT-PhD) or by pH sensitive PEGylated liposomes. Relative to non-PEGylated liposomes, the latter had been previously characterized and found to allow macrophage escape, thus increasing their chance to reach the tumour tissue. The transition from the SAINT-PhD delivery system to the engineered liposomes represents an advancement towards a more drug-like delivery system and a further step towards the use of peptides for in vivo studies. Overall, the results suggest that the association of standard drugs, such as cDDP and/or 5-FU and/or RTX, with the novel peptidic TS inhibitor encapsulated into PEGylated pH-sensitive liposomes can represent a promising strategy for fighting resistance to cDDP and anti-hTS drugs.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Lipossomos/química , Neoplasias Ovarianas/tratamento farmacológico , Fragmentos de Peptídeos/farmacologia , Timidilato Sintase/antagonistas & inibidores , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Fluoruracila/farmacologia , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Polietilenoglicóis/química , Quinazolinas/farmacologia , Tiofenos/farmacologia , Células Tumorais Cultivadas
9.
Cancers (Basel) ; 12(4)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316593

RESUMO

Mitotic perturbations frequently lead to chromosome mis-segregation that generates genome instability, thereby triggering tumor onset and/or progression. Error-free mitosis depends on fidelity-monitoring systems that ensure the temporal and spatial coordination of chromosome segregation. Recent investigations are focused on mitotic DNA damage response (DDR) and chromosome mis-segregations with the aim of developing more efficient anti-cancer therapies. We previously demonstrated that trichoplein keratin filament binding protein (TpMs) exhibits hallmarks of a tumor suppressor gene in cancer-derived cells and human tumors. Here, we show that silencing of TpMs expression results in chromosome mis-segregation, DNA damage and chromosomal instability. TpMs interacts with Mad2, and TpMs depletion results in decreased levels of Mad2 and Cyclin B1 proteins. All the genetic alterations observed are consistent with both defective activation of the spindle assembly checkpoint and mitotic progression. Thus, low levels of TpMs found in certain human tumors may contribute to cellular transformation by promoting genomic instability.

10.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817267

RESUMO

Ovarian cancer is the most lethal gynecological malignancy, often because of the frequent insurgence of chemoresistance to the drugs currently used. Thus, new therapeutical agents are needed. We tested the toxicity of 16 new DNA-intercalating agents to cisplatin (cDDP)-sensitive human ovarian carcinoma cell lines and their resistant counterparts. The compounds were the complexes of Pt(II) or Pd(II) with bipyridyl (bipy) and phenanthrolyl (phen) and with four different thiourea ancillary ligands. Within each of the four series of complexes characterized by the same thiourea ligand, the Pd(phen) drugs invariably showed the highest anti-proliferative efficacy. This paralleled both a higher intracellular drug accumulation and a more efficient DNA intercalation than all the other metal-bidentate ligand combinations. The consequent inhibition of topoisomerase II activity led to the greatest inhibition of DNA metabolism, evidenced by the inhibition of the expression of the folate cycle enzymes and a marked perturbation of cell-cycle distribution in both cell lines. These findings indicate that the particular interaction of Pd(II) with phenanthroline confers the best pharmacokinetic and pharmacodynamic properties that make this class of DNA intercalators remarkable inhibitors, even of the resistant cell growth.


Assuntos
Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Substâncias Intercalantes/farmacologia , Fenantrolinas/química , Tioureia/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , DNA/química , DNA/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Feminino , Humanos , Substâncias Intercalantes/química , Ligantes , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Paládio/química , Platina/química
11.
Molecules ; 24(19)2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31561530

RESUMO

Thymidylate synthase (TS) is a prominent drug target for different cancer types. However, the prolonged use of its classical inhibitors, substrate analogs that bind at the active site, leads to TS overexpression and drug resistance in the clinic. In the effort to identify anti-TS drugs with new modes of action and able to overcome platinum drug resistance in ovarian cancer, octapeptides with a new allosteric inhibition mechanism were identified as cancer cell growth inhibitors that do not cause TS overexpression. To improve the biological properties, 10 cyclic peptides (cPs) were designed from the lead peptides and synthesized. The cPs were screened for the ability to inhibit recombinant human thymidylate synthase (hTS), and peptide 7 was found to act as an allosteric inhibitor more potent than its parent open-chain peptide [Pro3]LR. In cytotoxicity studies on three human ovarian cancer cell lines, IGROV-1, A2780, and A2780/CP, peptide 5 and two other cPs, including 7, showed IC50 values comparable with those of the reference drug 5-fluorouracil, of the open-chain peptide [d-Gln4]LR, and of another seven prolyl derivatives of the lead peptide LR. These promising results indicate cP 7 as a possible lead compound to be chemically modified with the aim of improving both allosteric TS inhibitory activity and anticancer effectiveness.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Timidilato Sintase/antagonistas & inibidores , Sítio Alostérico , Sítios de Ligação , Linhagem Celular , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Desenho de Fármacos , Ativação Enzimática , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade
12.
J Ovarian Res ; 12(1): 62, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291979

RESUMO

BACKGROUND: All-trans retinoic acid (ATRA) is currently being used to treat hematological malignancies, given the ability to inhibit cell proliferation. This effect seems to be related to epigenetic changes of the TERT (Telomerase Reverse Transcriptase) promoter. When hypomethylated, ATRA-inducible TERT repressors can bind the promoter, repressing transcription of TERT, the rate-limiting component of telomerase. Ovarian carcinomas are heterogeneous tumors characterized by several aberrantly methylated genes among which is TERT. We recently found a hypomethylation of TERT promoter in about one third of serous carcinoma, the most lethal histotype. Our aim was to investigate the potential role of ATRA as an anticancer drug in a sub-group of ovarian carcinoma where the TERT promoter was hypomethylated. METHODS: The potential antiproliferative and cytotoxic effect of ATRA was investigated in seven serous ovarian carcinoma and one teratocarcinoma cell lines and the results were compared to the methylation status of their TERT promoter. RESULTS: The serous ovarian carcinoma cell line OVCAR3, harboring a hypomethylated TERT promoter, was the best and fastest responder. PA1 and SKOV3, two cell lines with an intermediate methylated promoter, revealed a weaker and delayed response. On the contrary, the other 5 cell lines with a highly methylated promoter did not respond to ATRA, indicative of ATRA-resistant cells. CONCLUSIONS: Our results demonstrate an inverse correlation between the methylation level of TERT promoter and ATRA efficacy in ovarian carcinoma cell lines. Although these results are preliminary, ATRA treatment could become a new powerful, personalized therapy in serous ovarian carcinoma patients, but only in those with tumors harboring a hypomethylated TERT promoter.


Assuntos
Antineoplásicos/farmacologia , Cistadenocarcinoma Seroso/genética , Epigênese Genética , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas/genética , Telomerase/genética , Tretinoína/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/patologia , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Tretinoína/uso terapêutico
13.
Pharm Res ; 35(11): 206, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209680

RESUMO

PURPOSE: To evaluate the potential effects of PEGylated pH-sensitive liposomes on the intracellular activity of a new peptide recently characterized as a novel inhibitor of the human thymidylate synthase (hTS) over-expressed in many drug-resistant human cancer cell lines. METHODS: Peptide-loaded pH-sensitive PEGylated (PpHL) and non-PEGylated liposomes (nPpHL) were carefully characterized and delivered to cis-platinum resistant ovarian cancer C13* cells; the influence of the PpHL on the drug intracellular activity was investigated by the Western Blot analysis of proteins involved in the pathway affected by hTS inhibition. RESULTS: Although PpHL and nPpHL showed different sizes, surface hydrophilicities and serum stabilities, both carriers entrapped the drug efficiently and stably demonstrating a pH dependent release; moreover, the different behavior against J774 macrophage cells confirmed the ability of PEGylation in protecting liposomes from the reticuloendothelial system. Comparable effects were instead observed against C13* cells and biochemical data by immunoblot analysis indicated that PEGylated pH-sensitive liposomes do not modify the proteomic profile of the cells, fully preserving the activity of the biomolecule. CONCLUSION: PpHL can be considered as efficient delivery systems for the new promising anti-cancer peptide.


Assuntos
Antineoplásicos/farmacologia , Portadores de Fármacos/química , Lipossomos/química , Nanopartículas/química , Oligopeptídeos/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Oligopeptídeos/química , Tamanho da Partícula , Polietilenoglicóis/química , Timidilato Sintase/antagonistas & inibidores
14.
Cancers (Basel) ; 10(9)2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30223434

RESUMO

Drug repurposing is a fast and consolidated approach for the research of new active compounds bypassing the long streamline of the drug discovery process. Several drugs in clinical practice have been reported for modulating the major Hippo pathway's terminal effectors, namely YAP (Yes1-associated protein), TAZ (transcriptional co-activator with PDZ-binding motif) and TEAD (transcriptional enhanced associate domains), which are directly involved in the regulation of cell growth and tissue homeostasis. Since this pathway is known to have many cross-talking phenomena with cell signaling pathways, many efforts have been made to understand its importance in oncology. Moreover, this could be relevant to obtain new molecular tools and potential therapeutic assets. In this review, we discuss the main mechanisms of action of the best-known compounds, clinically approved or investigational drugs, able to cross-talk and modulate the Hippo pathway, as an attractive strategy for the discovery of new potential lead compounds.

15.
J Med Chem ; 61(16): 7374-7380, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30035541

RESUMO

LR and [d-Gln4]LR peptides bind the monomer-monomer interface of human thymidylate synthase and inhibit cancer cell growth. Here, proline-mutated LR peptides were synthesized. Molecular dynamics calculations and circular dichroism spectra have provided a consistent picture of the conformational propensities of the [Pro n]-peptides. [Pro3]LR and [Pro4]LR show improved cell growth inhibition and similar intracellular protein modulation compared with LR. These represent a step forward to the identification of more rigid and metabolically stable peptides.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos/farmacologia , Timidilato Sintase/antagonistas & inibidores , Antineoplásicos/química , Linhagem Celular Tumoral , Dicroísmo Circular , Inibidores Enzimáticos/química , Feminino , Humanos , Simulação de Dinâmica Molecular , Mutação , Neoplasias Ovarianas/patologia , Peptídeos/química , Peptídeos/genética , Prolina/genética , Conformação Proteica , Timidilato Sintase/genética , Timidilato Sintase/metabolismo
16.
Front Pharmacol ; 9: 454, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867465

RESUMO

Proteomics and bioinformatics are a useful combined technology for the characterization of protein expression level and modulation associated with the response to a drug and with its mechanism of action. The folate pathway represents an important target in the anticancer drugs therapy. In the present study, a discovery proteomics approach was applied to tissue samples collected from ovarian cancer patients who relapsed after the first-line carboplatin-based chemotherapy and were treated with pemetrexed (PMX), a known folate pathway targeting drug. The aim of the work is to identify the proteomic profile that can be associated to the response to the PMX treatment in pre-treatement tissue. Statistical metrics of the experimental Mass Spectrometry (MS) data were combined with a knowledge-based approach that included bioinformatics and a literature review through ProteinQuest™ tool, to design a protein set of reference (PSR). The PSR provides feedback for the consistency of MS proteomic data because it includes known validated proteins. A panel of 24 proteins with levels that were significantly different in pre-treatment samples of patients who responded to the therapy vs. the non-responder ones, was identified. The differences of the identified proteins were explained for the patients with different outcomes and the known PMX targets were further validated. The protein panel herein identified is ready for further validation in retrospective clinical trials using a targeted proteomic approach. This study may have a general relevant impact on biomarker application for cancer patients therapy selection.

17.
Oxid Med Cell Longev ; 2018: 2389523, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29770165

RESUMO

Cancer is a death cause in economically developed countries that results growing also in developing countries. Improved outcome through targeted interventions faces the scarce selectivity of the therapies and the development of resistance to them that compromise the therapeutic effects. Genomic instability is a typical cancer hallmark due to DNA damage by genetic mutations, reactive oxygen and nitrogen species, ionizing radiation, and chemotherapeutic agents. DNA lesions can induce and/or support various diseases, including cancer. The DNA damage response (DDR) is a crucial signaling-transduction network that promotes cell cycle arrest or cell death to repair DNA lesions. DDR dysregulation favors tumor growth as downregulated or defective DDR generates genomic instability, while upregulated DDR may confer treatment resistance. Redox homeostasis deeply and capillary affects DDR as ROS activate/inhibit proteins and enzymes integral to DDR both in healthy and cancer cells, although by different routes. DDR regulation through modulating ROS homeostasis is under investigation as anticancer opportunity, also in combination with other treatments since ROS affect DDR differently in the patients during cancer development and treatment. Here, we highlight ROS-sensitive proteins whose regulation in oxidatively induced DDR might allow for selective strategies against cancer that are better tailored to the patients.


Assuntos
Antineoplásicos/farmacologia , Dano ao DNA/efeitos dos fármacos , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Reparo do DNA/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Supressoras de Tumor/metabolismo
18.
Drug Dev Ind Pharm ; 43(3): 465-473, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27885848

RESUMO

CONTEXT: LR-peptide, a novel hydrophilic peptide synthetized and characterized in previous work, is able to reduce the multi-drug resistance response in cisplatin (cDPP) resistant cancer cells by inhibiting human thymidylate synthase (hTS) overexpressed in several tumors, including ovarian and colon-rectal cancers, but it is unable to enter the cells spontaneously. OBJECTIVE: The aim of this work was to design and characterize liposomal vesicles as drug delivery systems for the LR peptide, evaluating the possible benefits of the pH-responsive feature in improving intracellular delivery. MATERIALS AND METHODS: For this purpose, conventional and pH-sensitive liposomes were formulated, compared regarding their physical-chemical properties (size, PDI, morphology, in vitro stability and drug release) and studied for in vitro cytotoxicity against a cDDP-resistant cancer cells. RESULTS AND DISCUSSION: Results indicated that LR peptide was successfully encapsulated in both liposomal formulations but at short incubation time only LR loaded pH-sensitive liposomes showed cell inhibition activity while for long incubation time the two kinds of liposomes demonstrated the same efficacy. CONCLUSIONS: Data provide evidence that acidic pH-triggered liposomal delivery is able to significantly reduce the time required by the systems to deliver the drug to the cells without inducing an enhancement of the efficacy of the drug.


Assuntos
Cisplatino/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Timidilato Sintase/antagonistas & inibidores , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Cisplatino/metabolismo , Relação Dose-Resposta a Droga , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Lipossomos , Timidilato Sintase/metabolismo , Resultado do Tratamento
20.
Sci Rep ; 6: 27198, 2016 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-27250901

RESUMO

Demonstrating a candidate drug's interaction with its target protein in live cells is of pivotal relevance to the successful outcome of the drug discovery process. Although thymidylate synthase (hTS) is an important anticancer target protein, the efficacy of the few anti-hTS drugs currently used in clinical practice is limited by the development of resistance. Hence, there is an intense search for new, unconventional anti-hTS drugs; there are approximately 1600 ongoing clinical trials involving hTS-targeting drugs, both alone and in combination protocols. We recently discovered new, unconventional peptidic inhibitors of hTS that are active against cancer cells and do not result in the overexpression of hTS, which is a known molecular source of resistance. Here, we propose an adaptation of the recently proposed tetracysteine-arsenic-binding-motif technology to detect and quantitatively characterize the engagement of hTS with one such peptidic inhibitor in cell lysates. This new model can be developed into a test for high-throughput screening studies of intracellular target-protein/small-molecule binding.


Assuntos
Arsênio/química , Cisteína/química , Inibidores Enzimáticos/química , Timidilato Sintase/química , Motivos de Aminoácidos , Arsênio/metabolismo , Domínio Catalítico , Cisteína/metabolismo , Inibidores Enzimáticos/farmacologia , Células HEK293 , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Timidilato Sintase/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA