Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
JHEP Rep ; 6(1): 100910, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38074504

RESUMO

Background & Aims: Cholangiocarcinoma (CCA) is a primary liver tumour characterised by a poor prognosis and limited therapeutic options. Available 3D human CCA models fail to faithfully recapitulate the tumour niche. We aimed to develop an innovative patient-specific CCA-on-chip platform. Methods: A CCA tumour microenvironment was recapitulated on a microfluidic three-channel chip using primary CCA cells, cancer-associated fibroblasts (CAFs), endothelial cells, and T cells isolated from CCA specimens (n = 6). CAF and CCA cells were co-cultured in the central channel, flanked by endothelial cells in one lateral channel, recreating a tubular structure. An extensive characterisation of this platform was carried out to investigate its diffusion ability, hydrogel properties, and changes in matrix composition. Cell phenotype and functional properties were assessed. Results: Primary cells seeded on the microfluidic device were shown to reproduce the architectural structure and maintain the original phenotype and functional properties. The tumour niche underwent a deep remodelling in the 3D device, with an increase in hydrogel stiffness and extracellular matrix deposition, mimicking in vivo CCA characteristics. T cells were incorporated into the device to assess its reliability for immune cell interaction studies. Higher T cell migration was observed using cells from patients with highly infiltrated tumours. Finally, the drug trial showed the ability of the device to recapitulate different drug responses based on patient characteristics. Conclusions: We presented a 3D CCA platform that integrates the major non-immune components of the tumour microenvironment and the T cell infiltrate, reflecting the CCA niche. This CCA-on-chip represents a reliable patient-specific 3D platform that will be of help to further elucidate the biological mechanisms involved in CCA and provide an efficient tool for personalised drug testing. Impact and implications: An innovative patient-specific cholangiocarcinoma (CCA)-on-chip platform was successfully developed, integrating the major components of the tumour microenvironment (tumour cells, cancer-associated fibroblasts, endothelial cells, and immune infiltrate) and faithfully mimicking the CCA niche. This CCA-on-chip represents a powerful tool for unravelling disease-associated cellular mechanisms in CCA and provides an efficient tool for personalised drug testing.

2.
Theranostics ; 13(1): 355-373, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593955

RESUMO

Rationale: Nanobodies (Nbs) have emerged as an elegant alternative to the use of conventional monoclonal antibodies in cancer therapy, but a detailed microscopic insight into the in vivo pharmacokinetics of different Nb formats in tumor-bearers is lacking. This is especially relevant for the recognition and targeting of pro-tumoral tumor-associated macrophages (TAMs), which may be located in less penetrable tumor regions. Methods: We employed anti-Macrophage Mannose Receptor (MMR) Nbs, in a monovalent (m) or bivalent (biv) format, to assess in vivo TAM targeting. Intravital and confocal microscopy were used to analyse the blood clearance rate and targeting kinetics of anti-MMR Nbs in tumor tissue, healthy muscle tissue and liver. Fluorescence Molecular Tomography was applied to confirm anti-MMR Nb accumulation in the primary tumor and in metastatic lesions. Results: Intravital microscopy demonstrated significant differences in the blood clearance rate and macrophage targeting kinetics of (m) and (biv)anti-MMR Nbs, both in tumoral and extra-tumoral tissue. Importantly, (m)anti-MMR Nbs are superior in reaching tissue macrophages, an advantage that is especially prominent in tumor tissue. The administration of a molar excess of unlabelled (biv)anti-MMR Nbs increased the (m)anti-MMR Nb bioavailability and impacted on its macrophage targeting kinetics, preventing their accumulation in extra-tumoral tissue (especially in the liver) but only partially influencing their interaction with TAMs. Finally, anti-MMR Nb administration not only allowed the visualization of TAMs in primary tumors, but also at a distant metastatic site. Conclusions: These data describe, for the first time, a microscopic analysis of (m) and (biv)anti-MMR Nb pharmacokinetics in tumor and healthy tissues. The concepts proposed in this study provide important knowledge for the future use of Nbs as diagnostic and therapeutic agents, especially for the targeting of tumor-infiltrating immune cells.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Humanos , Receptor de Manose , Lectinas Tipo C , Lectinas de Ligação a Manose , Receptores de Superfície Celular , Macrófagos Associados a Tumor , Neoplasias/tratamento farmacológico
3.
Biomolecules ; 10(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353213

RESUMO

Molecular imaging is constantly growing in different areas of preclinical biomedical research. Several imaging methods have been developed and are continuously updated for both in vivo and in vitro applications, in order to increase the information about the structure, localization and function of molecules involved in physiology and disease. Along with these progresses, there is a continuous need for improving labeling strategies. In the last decades, the single domain antigen-binding fragments nanobodies (Nbs) emerged as important molecular imaging probes. Indeed, their small size (~15 kDa), high stability, affinity and modularity represent desirable features for imaging applications, providing higher tissue penetration, rapid targeting, increased spatial resolution and fast clearance. Accordingly, several Nb-based probes have been generated and applied to a variety of imaging modalities, ranging from in vivo and in vitro preclinical imaging to super-resolution microscopy. In this review, we will provide an overview of the state-of-the-art regarding the use of Nbs in several imaging modalities, underlining their extreme versatility and their enormous potential in targeting molecules and cells of interest in both preclinical and clinical studies.


Assuntos
Antineoplásicos/química , Imagem Molecular/métodos , Neoplasias/terapia , Medicina de Precisão/métodos , Anticorpos de Domínio Único/química , Animais , Sistema Nervoso Central , Progressão da Doença , Corantes Fluorescentes , Humanos , Inflamação , Camundongos , Neoplasias/metabolismo , Pesquisa Translacional Biomédica
4.
Biochem Biophys Res Commun ; 503(4): 2704-2709, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30100062

RESUMO

Lysosomes are not merely degradative organelles but play a central role in nutrient sensing, metabolism and cell-growth regulation. Our ability to study their function in living cells strictly relies on the use of lysosome-specific fluorescent probes tailored to optical microscopy applications. Still, no report thus far quantitatively analyzed the effect of labeling strategies/procedures on lysosome properties in live cells. We tackle this issue by a recently developed spatiotemporal fluctuation spectroscopy strategy that extracts structural (size) and dynamic (diffusion) properties directly from imaging, with no a-priori knowledge of the system. We highlight hitherto neglected alterations of lysosome properties upon labeling. In particular, we demonstrate that Lipofectamine reagents, used to transiently express lysosome markers fused to fluorescent proteins (FPs) (e.g. LAMP1-FP or CD63-FP), irreversibly alter the organelle structural identity, inducing a ∼2-fold increase of lysosome average size. The organelle structural identity is preserved, instead, if electroporation or Effectene are used as transfection strategies, provided that the expression levels of the recombinant protein marker are kept low. This latter condition can be achieved also by generating cell lines stably expressing the desired FP-tagged marker. Reported results call into question the interpretation of a massive amount of data collected so far using fluorescent protein markers and suggest useful guidelines for future studies.


Assuntos
Proteínas de Membrana Lisossomal/genética , Lisossomos/metabolismo , Imagem Óptica/estatística & dados numéricos , Proteínas Recombinantes de Fusão/genética , Coloração e Rotulagem/métodos , Tetraspanina 30/genética , Eletroporação/métodos , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Genes Reporter , Células HeLa , Humanos , Lipídeos/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/ultraestrutura , Imagem Óptica/métodos , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência/métodos , Coloração e Rotulagem/normas , Tetraspanina 30/metabolismo , Transfecção
5.
ACS Omega ; 3(6): 6143-6150, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023942

RESUMO

Drug delivery monitoring and tracking in the human body are two of the biggest challenges in targeted therapy to be addressed by nanomedicine. The ability of imaging drugs and micro-/nanoengineered drug carriers and of visualizing their interactions at the cellular interface in a label-free manner is crucial in providing the ability of tracking their cellular pathways and will help understand their biological impact, allowing thus to improve the therapeutic efficacy. We present a fast, label-free technique to achieve high-resolution imaging at the mid-infrared (MIR) spectrum that provides chemical information. Using our custom-made benchtop infrared microscope using a high-repetition-rate pulsed laser (80 MHz, 40 ps), we were able to acquire images with subwavelength resolution (0.8 × λ) at very high speeds. As a proof-of-concept, we embarked on the investigation of nanoengineered polyelectrolyte capsules (NPCs) containing the anticancer drug, docetaxel. These NPCs were synthesized using a layer-by-layer approach built upon a calcium carbonate (CaCO3) core, which was then removed away with ethylenediaminetetraacetic acid. The obtained MIR images show that NPCs are attached to the cell membrane, which is a good step toward an efficient drug delivery. This has been confirmed by both three-dimensional confocal fluorescence and stimulated emission depletion microscopy. Coupled with additional instrumentation and data processing advancements, this setup is capable of video-rate imaging speeds and will be significantly complementing current super-resolution microscopy techniques while providing an unperturbed view into living cells.

6.
Pharmaceuticals (Basel) ; 9(3)2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27399724

RESUMO

Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

7.
Int J Pharm ; 510(2): 508-15, 2016 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-26827919

RESUMO

Nanocapsules and nanoparticles play an essential role in the delivery of pharmaceutical agents in modern era, since they can be delivered in specific tissues and cells. Natural polymers, such as cellulose acetate, are becoming very important due to their availability, biocompatibility, absence of toxicity and biodegradability. In parallel, essential oils are having continuous growth in biomedical applications due to the inherent active compounds that they contain. A characteristic example is lemongrass oil that has exceptional antimicrobial properties. In this work, nanocapsules of cellulose acetate with lemongrass oil were developed with the solvent/anti-solvent method with resulting diameter tailored between 95 and 185nm. Various physico-chemical and surface analysis techniques were employed to investigate the formation of the nanocapsules. These all-natural nanocapsules found to well bioadhere to mucous membranes and to have very good antimicrobial properties at little concentrations against Escherichia coli and Staphylococcus aureus.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Celulose/análogos & derivados , Nanocápsulas/química , Óleos Voláteis/química , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Terpenos/química , Terpenos/farmacologia , Celulose/química , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos , Óleos Voláteis/farmacologia , Solventes/química , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA