Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Hum Genet ; 31(12): 1357-1363, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37789085

RESUMO

During the neonatal period, many genetic disorders present and contribute to neonatal morbidity and mortality. Genomic medicine-the use of genomic information in clinical care- has the potential to significantly reduce morbidity and mortality in the neonatal period and improve outcomes for this population. Diagnostic genomic testing for symptomatic newborns, especially rapid testing, has been shown to be feasible and have diagnostic and clinical utility, particularly in the short-term. Ongoing studies are assessing the feasibility and utility, including personal utility, of implementation in diverse populations. Genomic screening for asymptomatic newborns has also been studied, and the acceptability and feasibility of such an approach remains an active area of investigation. Emerging precision therapies, with examples even at the "n-of-1" level, highlight the promise of precision diagnostics to lead to early intervention and improve outcomes. To sustainably implement genomic medicine in neonatal care in an ethical, effective, and equitable manner, we need to ensure access to genetics and genomics knowledge, access to genomic tests, which is currently limited by payors, feasible processes for ordering these tests, and access to follow up in the clinical and research realms. Future studies will provide further insight into enablers and barriers to optimize implementation strategies.


Assuntos
Medicina Genômica , Medicina de Precisão , Recém-Nascido , Humanos , Programas de Rastreamento , Genômica
2.
Neurobiol Dis ; 181: 106104, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972791

RESUMO

Over the past decade, there has been tremendous progress in understanding brain somatic mosaicism in epilepsy in the research setting. Access to resected brain tissue samples from patients with medically refractory epilepsy undergoing epilepsy surgery has been key to making these discoveries. In this review, we discuss the gap between making discoveries in the research setting and bringing results back to the clinical setting. Current clinical genetic testing mainly uses clinically accessible tissue samples, like blood and saliva, and can detect inherited and de novo germline variants and potentially non-brain-limited mosaic variants that have resulted from post-zygotic mutation (also called "somatic mutations"). Methods developed in the research setting to detect brain-limited mosaic variants using brain tissue samples need to be further translated and validated in the clinical setting, which will allow post-resection brain tissue genetic diagnoses. However, obtaining a genetic diagnosis after surgery for refractory focal epilepsy, when brain tissue samples are available, is arguably "too late" to guide precision management. Emerging methods using cerebrospinal fluid (CSF) and stereoelectroencephalography (SEEG) electrodes hold promise for establishing genetic diagnoses pre-resection without the need for actual brain tissue. In parallel, development of curation rules for interpreting the pathogenicity of mosaic variants, which have unique considerations compared to germline variants, will assist clinically accredited laboratories and epilepsy geneticists in making genetic diagnoses. Returning results of brain-limited mosaic variants to patients and their families will end their diagnostic odyssey and advance epilepsy precision management.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Mosaicismo , Epilepsia/genética , Epilepsia/cirurgia , Encéfalo/cirurgia , Mutação , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgia
3.
Neurotherapeutics ; 18(3): 1548-1563, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34608615

RESUMO

Malformations of cortical development (MCDs) represent a range of neurodevelopmental disorders that are collectively common causes of developmental delay and epilepsy, especially refractory childhood epilepsy. Initial treatment with antiseizure medications is empiric, and consideration of surgery is the standard of care for eligible patients with medically refractory epilepsy. In the past decade, advances in next generation sequencing technologies have accelerated progress in understanding the genetic etiologies of MCDs, and precision therapies for focal MCDs are emerging. Notably, mutations that lead to abnormal activation of the mammalian target of rapamycin (mTOR) pathway, which provides critical control of cell growth and proliferation, have emerged as a common cause of malformations. These include tuberous sclerosis complex (TSC), hemimegalencephaly (HME), and some types of focal cortical dysplasia (FCD). TSC currently represents the best example for the pathway from gene discovery to relatively safe and efficacious targeted therapy for epilepsy related to MCDs. Based on extensive pre-clinical and clinical data, the mTOR inhibitor everolimus is currently approved for the treatment of focal refractory seizures in patients with TSC. Although clinical studies are just emerging for FCD and HME, we believe the next decade will bring significant advancements in precision therapies for epilepsy related to these and other MCDs.


Assuntos
Epilepsia/genética , Epilepsia/terapia , Inibidores de MTOR/uso terapêutico , Malformações do Desenvolvimento Cortical/genética , Malformações do Desenvolvimento Cortical/terapia , Medicina de Precisão/métodos , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/epidemiologia , Everolimo/farmacologia , Everolimo/uso terapêutico , Humanos , Inibidores de MTOR/farmacologia , Malformações do Desenvolvimento Cortical/epidemiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Vigabatrina/farmacologia , Vigabatrina/uso terapêutico
4.
Pediatr Blood Cancer ; 68(8): e28935, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33694260

RESUMO

INTRODUCTION: Intracranial germ cell tumors (IGCTs) are rare tumors of the central nervous system with peak incidence around puberty. Given the developmental origins of IGCTs, we investigated the prevalence of neurodevelopmental disorders (NDDs) in patients with IGCTs and characterized outcomes for patients with NDD and IGCTs. METHODS: A retrospective review of medical records was conducted for 111 patients diagnosed with IGCTs between 1998 and 2018 and evaluated at the Massachusetts General Hospital. Kaplan-Meier method and log-rank test was used for survival analyses. Cox regression analyses were performed for parameters associated with progression-free survival (PFS). RESULTS: Median age at IGCT diagnosis was 12.8 years (range: 4.3-21.7) and median follow-up was 6.5 years (range: 0.2-20.5). Eighteen patients were diagnosed with NDDs prior to IGCT diagnosis, including five patients with autism spectrum disorder (ASD). Of the 67 patients with pure germinomas, four (6.0 %) had prior ASD diagnoses. Patients with NDD had significantly inferior PFS in the nongerminomatous germ cell tumor (NGGCT) cohort. On univariate and multivariable analyses, craniospinal irradiation (CSI) was significantly associated with improved PFS in the NGGCT cohort. CONCLUSIONS: Our study found an ASD prevalence in the pure germinoma cohort more than threefold greater than the national prevalence, suggesting an association between ASD and pure germinomas. Furthermore, patients with NDD and NGGCT had worse PFS, possibly due to fewer patients with NDD receiving CSI. Future prospective studies with larger cohorts are needed to examine associations between NDDs and IGCTs, and further characterize outcomes for patients with NDDs and IGCTs.


Assuntos
Transtorno do Espectro Autista , Neoplasias Encefálicas , Neoplasias Embrionárias de Células Germinativas , Transtornos do Neurodesenvolvimento , Adolescente , Transtorno do Espectro Autista/epidemiologia , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/terapia , Criança , Pré-Escolar , Germinoma , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/epidemiologia , Neoplasias Embrionárias de Células Germinativas/terapia , Estudos Prospectivos , Estudos Retrospectivos , Neoplasias Testiculares , Adulto Jovem
5.
Muscle Nerve ; 59(3): 357-362, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30412272

RESUMO

INTRODUCTION: Centronuclear myopathies (CNMs) are a subtype of congenital myopathies (CMs) characterized by muscle weakness, predominant type 1 fibers, and increased central nuclei. SPEG (striated preferentially expressed protein kinase) mutations have recently been identified in 7 CM patients (6 with CNMs). We report 2 additional patients with SPEG mutations expanding the phenotype and evaluate genotype-phenotype correlations associated with SPEG mutations. METHODS: Using whole exome/genome sequencing in CM families, we identified novel recessive SPEG mutations in 2 patients. RESULTS: Patient 1, with severe muscle weakness requiring respiratory support, dilated cardiomyopathy, ophthalmoplegia, and findings of nonspecific CM on muscle biopsy carried a homozygous SPEG mutation (p.Val3062del). Patient 2, with milder muscle weakness, ophthalmoplegia, and CNM carried compound heterozygous mutations (p.Leu728Argfs*82) and (p.Val2997Glyfs*52). CONCLUSIONS: The 2 patients add insight into genotype-phenotype correlations of SPEG-associated CMs. Clinicians should consider evaluating a CM patient for SPEG mutations even in the absence of CNM features. Muscle Nerve 59:357-362, 2019.


Assuntos
Proteínas Musculares/genética , Miopatias Congênitas Estruturais/congênito , Miopatias Congênitas Estruturais/genética , Proteínas Serina-Treonina Quinases/genética , Biópsia , Criança , Pré-Escolar , Consanguinidade , Exoma/genética , Feminino , Estudos de Associação Genética , Humanos , Lactente , Masculino , Debilidade Muscular/etiologia , Debilidade Muscular/genética , Músculo Esquelético/patologia , Mutação/genética , Análise de Sequência
6.
Am J Med Genet A ; 176(7): 1627-1631, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704303

RESUMO

Congenital central hypoventilation syndrome (CCHS) is a disorder of ventilatory control and autonomic dysregulation that can be caused by mutations in the paired-like homeobox 2B (PHOX2B) gene. The majority of CCHS cases are caused by polyalanine repeat mutations (PARMs) in PHOX2B; however, in rare cases, non-polyalanine repeat mutations (NPARMs) have been identified. Here, we report two patients with NPARMs in PHOX2B. Patient 1 has a mild CCHS phenotype seen only on polysomnogram, which was performed for desaturations and stridor following a bronchiolitis episode, and characterized by night-time hypoventilation and a history of ganglioneuroblastoma. She carried a novel de novo missense variant, p.R102S (c.304C > A), in exon 2. Patient 2 has an atypical CCHS phenotype including micrognathia, gastroesophageal reflux, stridor, hypopnea, and intermittent desaturations. Sleep study demonstrated that Patient 2 had daytime and night-time hypercarbia with obstructive sleep apnea, requiring tracheostomy. On PHOX2B sequencing, she carried a recently identified nonsense variant, p.Y78* (c.234C > G), in exon 1. In summary, we present two patients with CCHS and identified NPARMs in PHOX2B who have distinct differences in phenotype severity, further elucidating the range of clinical outcomes in CCHS and illustrating the necessity of considering PHOX2B mutations when encountering atypical CCHS presentations.


Assuntos
Proteínas de Homeodomínio/genética , Hipoventilação/congênito , Mutação , Apneia do Sono Tipo Central/genética , Apneia do Sono Tipo Central/patologia , Fatores de Transcrição/genética , Pré-Escolar , Feminino , Humanos , Hipoventilação/genética , Hipoventilação/patologia , Recém-Nascido , Fenótipo , Prognóstico
7.
Cell Rep ; 21(13): 3754-3766, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281825

RESUMO

Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are epileptogenic neurodevelopmental malformations caused by mutations in mTOR pathway genes. Deep sequencing of these genes in FCD/HME brain tissue identified an etiology in 27 of 66 cases (41%). Radiographically indistinguishable lesions are caused by somatic activating mutations in AKT3, MTOR, and PIK3CA and germline loss-of-function mutations in DEPDC5, NPRL2, and TSC1/2, including TSC2 mutations in isolated HME demonstrating a "two-hit" model. Mutations in the same gene cause a disease continuum from FCD to HME to bilateral brain overgrowth, reflecting the progenitor cell and developmental time when the mutation occurred. Single-cell sequencing demonstrated mTOR activation in neurons in all lesions. Conditional Pik3ca activation in the mouse cortex showed that mTOR activation in excitatory neurons and glia, but not interneurons, is sufficient for abnormal cortical overgrowth. These data suggest that mTOR activation in dorsal telencephalic progenitors, in some cases specifically the excitatory neuron lineage, causes cortical dysplasia.


Assuntos
Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Transdução de Sinais , Células-Tronco/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Telencéfalo/patologia , Animais , Linhagem da Célula , Classe I de Fosfatidilinositol 3-Quinases/genética , Hemimegalencefalia/genética , Hemimegalencefalia/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia
8.
Nat Genet ; 49(4): 606-612, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28250456

RESUMO

Motor, sensory, and integrative activities of the brain are coordinated by a series of midline-bridging neuronal commissures whose development is tightly regulated. Here we report a new human syndrome in which these commissures are widely disrupted, thus causing clinical manifestations of horizontal gaze palsy, scoliosis, and intellectual disability. Affected individuals were found to possess biallelic loss-of-function mutations in the gene encoding the axon-guidance receptor 'deleted in colorectal carcinoma' (DCC), which has been implicated in congenital mirror movements when it is mutated in the heterozygous state but whose biallelic loss-of-function human phenotype has not been reported. Structural MRI and diffusion tractography demonstrated broad disorganization of white-matter tracts throughout the human central nervous system (CNS), including loss of all commissural tracts at multiple levels of the neuraxis. Combined with data from animal models, these findings show that DCC is a master regulator of midline crossing and development of white-matter projections throughout the human CNS.


Assuntos
Encéfalo/anormalidades , Neoplasias Colorretais/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Perda de Heterozigosidade/genética , Mutação/genética , Sistema Nervoso Central/anormalidades , Feminino , Humanos , Deficiência Intelectual/genética , Masculino , Neurônios/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Receptores de Superfície Celular/genética
9.
Science ; 350(6256): 94-98, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26430121

RESUMO

Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Mutação , Neurônios/citologia , Neurônios/fisiologia , Polimorfismo de Nucleotídeo Único , Transcrição Gênica , Adolescente , Linhagem da Célula , Análise Mutacional de DNA , Replicação do DNA/genética , Feminino , Loci Gênicos , Humanos , Masculino , Mitose/genética , Análise de Célula Única
10.
Ann Neurol ; 77(4): 720-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25599672

RESUMO

Focal malformations of cortical development, including focal cortical dysplasia (FCD) and hemimegalencephaly (HME), are important causes of intractable childhood epilepsy. Using targeted and exome sequencing on DNA from resected brain samples and nonbrain samples from 53 patients with FCD or HME, we identified pathogenic germline and mosaic mutations in multiple PI3K/AKT pathway genes in 9 patients, and a likely pathogenic variant in 1 additional patient. Our data confirm the association of DEPDC5 with sporadic FCD but also implicate this gene for the first time in HME. Our findings suggest that modulation of the mammalian target of rapamycin pathway may hold promise for malformation-associated epilepsy.


Assuntos
Hemimegalencefalia/genética , Malformações do Desenvolvimento Cortical/genética , Mutação/genética , Proteínas Repressoras/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Estudos de Coortes , Proteínas Ativadoras de GTPase , Hemimegalencefalia/diagnóstico , Humanos , Malformações do Desenvolvimento Cortical/diagnóstico , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
11.
N Engl J Med ; 371(8): 733-43, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25140959

RESUMO

BACKGROUND: Although there is increasing recognition of the role of somatic mutations in genetic disorders, the prevalence of somatic mutations in neurodevelopmental disease and the optimal techniques to detect somatic mosaicism have not been systematically evaluated. METHODS: Using a customized panel of known and candidate genes associated with brain malformations, we applied targeted high-coverage sequencing (depth, ≥200×) to leukocyte-derived DNA samples from 158 persons with brain malformations, including the double-cortex syndrome (subcortical band heterotopia, 30 persons), polymicrogyria with megalencephaly (20), periventricular nodular heterotopia (61), and pachygyria (47). We validated candidate mutations with the use of Sanger sequencing and, for variants present at unequal read depths, subcloning followed by colony sequencing. RESULTS: Validated, causal mutations were found in 27 persons (17%; range, 10 to 30% for each phenotype). Mutations were somatic in 8 of the 27 (30%), predominantly in persons with the double-cortex syndrome (in whom we found mutations in DCX and LIS1), persons with periventricular nodular heterotopia (FLNA), and persons with pachygyria (TUBB2B). Of the somatic mutations we detected, 5 (63%) were undetectable with the use of traditional Sanger sequencing but were validated through subcloning and subsequent sequencing of the subcloned DNA. We found potentially causal mutations in the candidate genes DYNC1H1, KIF5C, and other kinesin genes in persons with pachygyria. CONCLUSIONS: Targeted sequencing was found to be useful for detecting somatic mutations in patients with brain malformations. High-coverage sequencing panels provide an important complement to whole-exome and whole-genome sequencing in the evaluation of somatic mutations in neuropsychiatric disease. (Funded by the National Institute of Neurological Disorders and Stroke and others.).


Assuntos
Córtex Cerebral/anormalidades , Análise Mutacional de DNA/métodos , Malformações do Desenvolvimento Cortical/genética , Mutação , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Humanos , Lisencefalia/genética , Imageamento por Ressonância Magnética , Malformações do Desenvolvimento Cortical/patologia , Heterotopia Nodular Periventricular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA