Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 149, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514650

RESUMO

Breast Cancer (BC) is one of the most common tumours, and is known for its ability to develop resistance to chemotherapeutic treatments. Autophagy has been linked to chemotherapeutic response in several types of cancer, highlighting its contribution to this process. However, the role of mitophagy, a selective form of autophagy responsible for damaged mitochondria degradation, in the response to therapies in BC is still unclear. In order to address this point, we analysed the role of mitophagy in the treatment of the most common anticancer drug, doxorubicin (DXR), in different models of BC, such as a luminal A subtype-BC cell line MCF7 cells, cultured in 2-Dimension (2D) or in 3-Dimension (3D), and the triple negative BC (TNBC) cell line MDA-MB-231. Through a microarray analysis, we identified a relationship between mitophagy gene expressions related to the canonical PINK1/Parkin-mediated pathway and DXR treatment in BC cells. Afterwards, we demonstrated that the PINK1/Parkin-dependent mitophagy is indeed induced following DXR treatment and that exogenous expression of a small non-coding RNA, the miRNA-218-5p, known to target mRNA of Parkin, was sufficient to inhibit the DXR-mediated mitophagy in MCF7 and in MDA-MB-231 cells, thereby increasing their sensitivity to DXR. Considering the current challenges involved in BC refractory to treatment, our work could provide a promising approach to prevent tumour resistance and recurrence, potentially leading to the development of an innovative approach to combine mitophagy inhibition and chemotherapy.

2.
Neurology ; 101(19): e1933-e1938, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37652704

RESUMO

OBJECTIVES: Different pathophysiologic mechanisms, especially involving astrocytes, could contribute to tuberous sclerosis complex (TSC). We assessed neurodegeneration and astrocytopathy plasma biomarkers in adult patients with TSC to define TSC biomarker profile and investigate clinical-radiologic correlations. METHODS: Patients with TSC aged 15 years or older followed at Policlinico "Umberto I" of Rome were consecutively enrolled (July 2021-June 2022). The plasma levels of the following biomarkers were compared between patients and age/sex-matched healthy controls (HCs): tTau, pTau181, Abeta40, Abeta42, neurofilament light chain, and glial fibrillary acid protein (GFAP). RESULTS: Thirty-one patients (20 females/11 males; median age 30 years, interquartile range 24-47) and 38 HCs were enrolled. Only GFAP was significantly higher in the whole TSC population than in HCs (132.71 [86.14-231.06] vs 44.80 [32.87-66.76] pg/mL, p < 0.001), regardless of genotype. GFAP correlated with the disease clinical (ρ = 0.498, p = 0.005) and radiologic severity (ρ = 0.417, p = 0.001). It was significantly higher in patients with epileptic spasms (254.50 [137.54-432.96] vs 86.92 [47.09-112.76] pg/mL, p < 0.0001), moderate-severe intellectual disability (200.80 [78.40-427.6] vs 105.08 [46.80-152.58] pg/mL, p = 0.040), and autism spectrum disorder (306.26 [159.07-584.47] vs 109.34 [72.56-152.08] pg/mL, p = 0.021). DISCUSSION: Our exploratory study documented a significant increase of GFAP plasma concentration in adult patients with TSC, correlated with their neurologic severity, supporting the central role of astrocytopathy in TSC pathophysiology.


Assuntos
Transtorno do Espectro Autista , Esclerose Tuberosa , Masculino , Feminino , Humanos , Adulto , Transtorno do Espectro Autista/genética , Esclerose Tuberosa/genética , Biomarcadores , Astrócitos , Genótipo , Proteína Glial Fibrilar Ácida/genética
3.
Pharmaceutics ; 14(9)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36145575

RESUMO

(1) Backgrond: Considering the positive effects of citicoline (CIT) in the management of some neurodegenerative diseases, the aim of this work was to develop CIT-Loaded Solid Lipid Nanoparticles (CIT-SLNs) for enhancing the therapeutic use of CIT in parkinsonian syndrome; (2) Methods: CIT-SLNs were prepared by the melt homogenization method using the self-emulsifying lipid Gelucire® 50/13 as lipid matrix. Solid-state features on CIT-SLNs were obtained with FT-IR, thermal analysis (DSC) and X-ray powder diffraction (XRPD) studies. (3) Results: CIT-SLNs showed a mean diameter of 201 nm, -2.20 mV as zeta potential and a high percentage of entrapped CIT. DSC and XRPD analyses evidenced a greater amorphous state of CIT in CIT-SLNs. On confocal microscopy, fluorescent SLNs replacing unlabeled CIT-SLNs released the dye selectively in the cytoplasm. Biological evaluation showed that pre-treatment of SH-SY5Y dopaminergic cells with CIT-SLNs (50 µM) before the addition of 40 µM 6-hydroxydopamine (6-OHDA) to mimic Parkinson's disease's degenerative pathways counteracts the cytotoxic effects induced by the neurotoxin, increasing cell viability with the consistent maintenance of both nuclear and cell morphology. In contrast, pre-treatment with CIT 50 and 60 µM or plain SLNs for 2 h followed by 6-OHDA (40 µM) did not significantly influence cell viability. (4) Conclusions: These data suggest an enhanced protection exerted by CIT-SLNs with respect to free CIT and prompt further investigation of possible molecular mechanisms that underlie this difference.

4.
Acta Diabetol ; 56(12): 1265-1274, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31292722

RESUMO

AIM: Obesity and low-grade inflammation are associated with an increased risk of hepatocellular carcinoma (HCC), a leading cause of cancer-related death worldwide. The tissue inhibitor of metalloproteinase (TIMP) 3, an endogenous inhibitor of protease activity that represents a key mediator of inflammation, is reduced in inflammatory metabolic disorders and cancer. In contrast, Timp3-deficient mice (Timp3-/-) are highly resistant to developing HCC in response to a diethylnitrosamine (DEN); therefore, we aimed to elucidate the biological role of genetic loss of Timp3 in obesity-related hepatocarcinogenesis. METHODS: Fourteen-day-old male wild-type (wt) and Timp3-/- mice were injected with 25 mg/kg DEN or an equal volume of saline. After 4 weeks, mice were randomized into two dietary groups and fed either normal or high-fat diet and allowed to grow until 32 weeks of age. Liver histological features were analyzed, and differentially expressed genes in the liver were quantified. RESULTS: In Timp3-/- mice fed with the obesogenic diet, despite the increase in liver steatosis and inflammation, both the number of tumors and the total tumor size are significantly reduced 30 weeks post-DEN injection, compared to control mice. Moreover, Timp3 deletion in hepatocarcinogenesis during obesity is associated with a reduction in FoxM1 transcriptional activity through H19/miR-675/p53 pathway. CONCLUSIONS: This study suggests that Timp3 ablation leads to cell cycle perturbation, at least in part by repressing FoxM1 transcriptional activity through H19/miR-675/p53 pathway.


Assuntos
Carcinoma Hepatocelular/patologia , Dieta Hiperlipídica/efeitos adversos , Neoplasias Hepáticas/patologia , Obesidade/etiologia , Inibidor Tecidual de Metaloproteinase-3/genética , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Progressão da Doença , Fígado Gorduroso/etiologia , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Proteína Forkhead Box M1/metabolismo , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/patologia , Transdução de Sinais/genética
5.
Stem Cell Reports ; 10(3): 1016-1029, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29456186

RESUMO

The capability of generating neural precursor cells with distinct types of regional identity in vitro has recently opened new opportunities for cell replacement in animal models of neurodegenerative diseases. By manipulating Wnt and BMP signaling, we steered the differentiation of mouse embryonic stem cells (ESCs) toward isocortical or hippocampal molecular identity. These two types of cells showed different degrees of axonal outgrowth and targeted different regions when co-transplanted in healthy or lesioned isocortex or in hippocampus. In hippocampus, only precursor cells with hippocampal molecular identity were able to extend projections, contacting CA3. Conversely, isocortical-like cells were capable of extending long-range axonal projections only when transplanted in motor cortex, sending fibers toward both intra- and extra-cortical targets. Ischemic damage induced by photothrombosis greatly enhanced the capability of isocortical-like cells to extend far-reaching projections. Our results indicate that neural precursors generated by ESCs carry intrinsic signals specifying axonal extension in different environments.


Assuntos
Hipocampo/fisiologia , Córtex Motor/fisiologia , Células-Tronco Embrionárias Murinas/fisiologia , Neocórtex/fisiologia , Neurônios/fisiologia , Animais , Axônios/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos , Neurogênese/fisiologia , Transplante/métodos
6.
Oncotarget ; 8(13): 21692-21709, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423511

RESUMO

The efficacy of Ataxia-Telangiectasia Mutated (ATM) kinase signalling inhibition in cancer therapy is tempered by the identification of new emerging functions of ATM, which suggests that the role of this protein in cancer progression is complex. We recently demonstrated that this tumor suppressor gene could act as tumor promoting factor in HER2 (Human Epidermal Growth Factor Receptor 2) positive breast cancer. Herein we put in evidence that ATM expression sustains the proportion of cells with a stem-like phenotype, measured as the capability to form mammospheres, independently of HER2 expression levels. Transcriptomic analyses revealed that, in mammospheres, ATM modulates the expression of cell cycle-, DNA repair- and autophagy-related genes. Among these, the silencing of the autophagic gene, autophagy related 4C cysteine peptidase (ATG4C), impairs mammosphere formation similarly to ATM depletion. Conversely, ATG4C ectopic expression in cells silenced for ATM expression, rescues mammospheres growth. Finally, tumor array analyses, performed using public data, identify a significant correlation between ATM and ATG4C expression levels in all human breast cancer subtypes, except for the basal-like one.Overall, we uncover a new connection between ATM kinase and autophagy regulation in breast cancer. We demonstrate that, in breast cancer cells, ATM and ATG4C are essential drivers of mammosphere formation, suggesting that their targeting may improve current approaches to eradicate breast cancer cells with a stem-like phenotype.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Relacionadas à Autofagia/biossíntese , Autofagia , Neoplasias da Mama/patologia , Cisteína Endopeptidases/biossíntese , Células-Tronco Neoplásicas/patologia , Autofagia/fisiologia , Western Blotting , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Imunofluorescência , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Células-Tronco Neoplásicas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
7.
PLoS One ; 12(3): e0172399, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28253359

RESUMO

The DNA repair protein Cockayne syndrome group B (CSB) has been recently identified as a promising anticancer target. Suppression, by antisense technology, of this protein causes devastating effects on tumor cells viability, through a massive induction of apoptosis, while being non-toxic to non-transformed cells. To gain insights into the mechanisms underlying the pro-apoptotic effects observed after CSB ablation, global gene expression patterns were determined, to identify genes that were significantly differentially regulated as a function of CSB expression. Our findings revealed that response to endoplasmic reticulum stress and response to unfolded proteins were ranked top amongst the cellular processes affected by CSB suppression. The major components of the endoplasmic reticulum stress-mediated apoptosis pathway, including pro-apoptotic factors downstream of the ATF3-CHOP cascade, were dramatically up-regulated. Altogether our findings add new pieces to the understanding of CSB mechanisms of action and to the molecular basis of CS syndrome.


Assuntos
Apoptose/genética , DNA Helicases/deficiência , DNA Helicases/genética , Enzimas Reparadoras do DNA/deficiência , Enzimas Reparadoras do DNA/genética , Estresse do Retículo Endoplasmático/genética , Inativação Gênica , Regulação Neoplásica da Expressão Gênica/genética , Células HeLa , Humanos , Proteínas de Ligação a Poli-ADP-Ribose
8.
Mol Cancer ; 16(1): 55, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270148

RESUMO

BACKGROUND: Many tumor-related factors have shown the ability to affect metabolic pathways by paving the way for cancer-specific metabolic features. Here, we investigate the regulation of mTORC1 by MDM4, a p53-inhibitor with oncogenic or anti-survival activities depending on cell growth conditions. METHOD: MDM4-mTOR relationship was analysed through experiments of overexpression or silencing of endogenous proteins in cell culture and using purified proteins in vitro. Data were further confirmed in vivo using a transgenic mouse model overexpressing MDM4. Additionally, the Cancer Genome Atlas (TCGA) database (N = 356) was adopted to analyze the correlation between MDM4 and mTOR levels and 3D cultures were used to analyse the p53-independent activity of MDM4. RESULTS: Following nutrient deprivation, MDM4 impairs mTORC1 activity by binding and inhibiting the kinase mTOR, and contributing to maintain the cytosolic inactive pool of mTORC1. This function is independent of p53. Inhibition of mTORC1 by MDM4 results in reduced phosphorylation of the mTOR downstream target p70S6K1 both in vitro and in vivo in a MDM4-transgenic mouse. Consistently, MDM4 reduces cell size and proliferation, two features controlled by p70S6K1, and, importantly, inhibits mTORC1-mediated mammosphere formation. Noteworthy, MDM4 transcript levels are significantly reduced in breast tumors characterized by high mTOR levels. CONCLUSION: Overall, these data identify MDM4 as a nutrient-sensor able to inhibit mTORC1 and highlight its metabolism-related tumor-suppressing function.


Assuntos
Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Ciclo Celular , Proteínas de Ciclo Celular , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais
9.
Mol Neurobiol ; 54(5): 3729-3744, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27221609

RESUMO

The mouse neuroblastoma N18TG2 clone is unable to differentiate and is defective for the enzymes of the biosynthesis of neurotransmitters. The forced expression of choline acetyltransferase (ChAT) in these cells results in the synthesis and release of acetylcholine (Ach) and hence in the expression of neurospecific features and markers. To understand how the expression of ChAT triggered neuronal differentiation, we studied the differences in genome-wide transcription profiles between the N18TG2 parental cells and its ChAT-expressing 2/4 derived clone. The engagement of the 2/4 cells in the neuronal developmental program was confirmed by the increase of the expression level of several differentiation-related genes and by the reduction of the amount of transcripts of cell cycle genes. At the same time, we observed a massive reorganization of cytoskeletal proteins in terms of gene expression, with the accumulation of the nucleoskeletal lamina component Lamin A/C in differentiating cells. The increase of the Lmna transcripts induced by ChAT expression in 2/4 cells was mimicked treating the parental N18TG2 cells with the acetylcholine receptor agonist carbachol, thus demonstrating the direct role played by this receptor in neuron nuclei maturation. Conversely, a treatment of 2/4 cells with the muscarinic receptor antagonist atropine resulted in the reduction of the amount of Lmna RNA. Finally, the hypothesis that Lmna gene product might play a crucial role in the ChAT-dependent molecular differentiation cascade was strongly supported by Lmna knockdown in 2/4 cells leading to the downregulation of genes involved in differentiation and cytoskeleton formation and to the upregulation of genes known to regulate self-renewal and stemness.


Assuntos
Diferenciação Celular , Colina O-Acetiltransferase/metabolismo , Lamina Tipo A/metabolismo , Neuroblastoma/enzimologia , Neuroblastoma/patologia , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Ontologia Genética , Camundongos , Neuroblastoma/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Mapeamento de Interação de Proteínas , Receptores Colinérgicos/metabolismo , Receptores Muscarínicos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Tretinoína/farmacologia , Regulação para Cima/efeitos dos fármacos
10.
Cancer Res ; 75(21): 4560-72, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26359458

RESUMO

Restoration of wild-type p53 tumor suppressor function has emerged as an attractive anticancer strategy. Therapeutics targeting the two p53-negative regulators, MDM2 and MDM4, have been developed, but most agents selectively target the ability of only one of these molecules to interact with p53, leaving the other free to operate. Therefore, we developed a method that targets the activity of MDM2 and MDM4 simultaneously based on recent studies indicating that formation of MDM2/MDM4 heterodimer complexes are required for efficient inactivation of p53 function. Using computational and mutagenesis analyses of the heterodimer binding interface, we identified a peptide that mimics the MDM4 C-terminus, competes with endogenous MDM4 for MDM2 binding, and activates p53 function. This peptide induces p53-dependent apoptosis in vitro and reduces tumor growth in vivo. Interestingly, interfering with the MDM2/MDM4 heterodimer specifically activates a p53-dependent oxidative stress response. Consistently, distinct subcellular pools of MDM2/MDM4 complexes were differentially sensitive to the peptide; nuclear MDM2/MDM4 complexes were particularly highly susceptible to the peptide-displacement activity. Taken together, these data identify the MDM2/MDM4 interaction interface as a valuable molecular target for therapeutic reactivation of p53 oncosuppressive function.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas Nucleares/metabolismo , Peptídeos/uso terapêutico , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/fisiologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células HCT116 , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Knockout , Camundongos Nus , Estresse Oxidativo/fisiologia , Ligação Proteica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Ubiquitinação
11.
BMC Neurosci ; 15: 48, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24713110

RESUMO

BACKGROUND: Growing evidence shows that, in vivo, the precursor of Nerve Growth Factor (NGF), proNGF, displays biological activities different from those of its mature NGF counterpart, mediated by distinct, and somewhat complementary, receptor binding properties. NGF and proNGF induce distinct transcriptional signatures in target cells, highlighting their different bioactivities. In vivo, proNGF and mature NGF coexist. It was proposed that the relative proNGF/NGF ratio is important for their biological outcomes, especially in pathological conditions, since proNGF, the principal form of NGF in Central Nervous System (CNS), is increased in Alzheimer's disease brains. These observations raise a relevant question: does proNGF, in the presence of NGF, influence the NGF transcriptional response and viceversa? In order to understand the specific proNGF effect on NGF activity, depending on the relative proNGF/NGF concentration, we investigated whether proNGF affects the pattern of well-known NGF-regulated mRNAs. RESULTS: To test any influence of proNGF on pure NGF expression fingerprinting, the expression level of a set of candidate genes was analysed by qReal-Time PCR in rat adrenal pheochromocytoma cell line PC12, treated with a mixture of NGF and proNGF recombinant proteins, in different stoichiometric ratios. These candidates were selected amongst a set of genes well-known as being rapidly induced by NGF treatment. We found that, when PC12 cells are treated with proNGF/NGF mixtures, a unique pattern of gene expression, which does not overlap with that deriving from treatment with either proNGF or NGF alone, is induced. The specific effect is also dependent on the stoichiometric composition of the mixture. The proNGF/NGF equimolar mixture seems to partially neutralize the specific effects of the proNGF or NGF individual treatments, showing a weaker overall response, compared to the individual contributions of NGF and proNGF alone. CONCLUSIONS: Using gene expression as a functional read-out, our data demonstrate that the relative availability of NGF and proNGF in vivo might modulate the biological outcome of these ligands.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/metabolismo , Fator de Crescimento Neural/metabolismo , Precursores de Proteínas/metabolismo , Animais , Células PC12 , Ratos
12.
EMBO Mol Med ; 5(3): 441-55, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23401241

RESUMO

ADAM17 and its inhibitor TIMP3 are involved in nephropathy, but their role in diabetic kidney disease (DKD) is unclear. Diabetic Timp3(-/-) mice showed increased albuminuria, increased membrane thickness and mesangial expansion. Microarray profiling uncovered a significant reduction of Foxo1 expression in diabetic Timp3(-/-) mice compared to WT, along with FoxO1 target genes involved in autophagy, while STAT1, a repressor of FoxO1 transcription, was increased. Re-expression of Timp3 in Timp3(-/-) mesangial cells rescued the expression of Foxo1 and its targets, and decreased STAT1 expression to control levels; abolishing STAT1 expression led to a rescue of FoxO1, evoking a role of STAT1 in linking Timp3 deficiency to FoxO1. Studies on kidney biopsies from patients with diabetic nephropathy confirmed a significant reduction in TIMP3, FoxO1 and FoxO1 target genes involved in autophagy compared to controls, while STAT1 expression was strongly increased. Our study suggests that loss of TIMP3 is a hallmark of DKD in human and mouse models and designates TIMP3 as a new possible therapeutic target for diabetic nephropathy.


Assuntos
Diabetes Mellitus Experimental/complicações , Nefropatias Diabéticas/etiologia , Fatores de Transcrição Forkhead/metabolismo , Glomérulos Renais/metabolismo , Fator de Transcrição STAT1/metabolismo , Inibidor Tecidual de Metaloproteinase-3/deficiência , Albuminúria/etiologia , Albuminúria/metabolismo , Animais , Autofagia , Biópsia , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Glomérulos Renais/patologia , Células Mesangiais/metabolismo , Camundongos , Camundongos Knockout , Cultura Primária de Células , Interferência de RNA , Fator de Transcrição STAT1/genética , Transdução de Sinais , Inibidor Tecidual de Metaloproteinase-3/genética , Transfecção
13.
PLoS One ; 7(9): e45513, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049808

RESUMO

BACKGROUND: Neuroblastoma (NB) is one of the most aggressive tumors that occur in childhood. Although genes, such as MYCN, have been shown to be involved in the aggressiveness of the disease, the identification of new biological markers is still desirable. The induction of differentiation is one of the strategies used in the treatment of neuroblastoma. A-type lamins are components of the nuclear lamina and are involved in differentiation. We studied the role of Lamin A/C in the differentiation and progression of neuroblastoma. METHODOLOGY/PRINCIPAL FINDINGS: Knock-down of Lamin A/C (LMNA-KD) in neuroblastoma cells blocked retinoic acid-induced differentiation, preventing neurites outgrowth and the expression of neural markers. The genome-wide gene-expression profile and the proteomic analysis of LMNA-KD cells confirmed the inhibition of differentiation and demonstrated an increase of aggressiveness-related genes and molecules resulting in augmented migration/invasion, and increasing the drug resistance of the cells. The more aggressive phenotype acquired by LMNA-KD cells was also maintained in vivo after injection into nude mice. A preliminary immunohistochemistry analysis of Lamin A/C expression in nine primary stages human NB indicated that this protein is poorly expressed in most of these cases. CONCLUSIONS/SIGNIFICANCE: We demonstrated for the first time in neuroblastoma cells that Lamin A/C plays a central role in the differentiation, and that the loss of this protein gave rise to a more aggressive tumor phenotype.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Lamina Tipo A/genética , Neuroblastoma/genética , Neuroblastoma/patologia , Animais , Antibióticos Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Lamina Tipo A/antagonistas & inibidores , Lamina Tipo A/metabolismo , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Neuritos/efeitos dos fármacos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Proteoma/genética , Proteoma/metabolismo , Tretinoína/farmacologia
14.
PLoS One ; 6(6): e20839, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21677785

RESUMO

The biological activities of NGF and of its precursor proNGF are quite distinct, due to different receptor binding profiles, but little is known about how proNGF regulates gene expression. Whether proNGF is a purely pro-apoptotic molecule and/or simply a "less potent NGF" is still a matter of debate. We performed experiments to address this question, by verifying whether a proNGF specific transcriptional signature, distinct from that of NGF, could be identified. To this aim, we studied gene expression regulation by proNGF and NGF in PC12 cells incubated for 1 and 4 hours with recombinant NGF and proNGF, in its wild-type or in a furin-cleavage resistant form. mRNA expression profiles were analyzed by whole genome microarrays at early time points, in order to identify specific profiles of NGF and proNGF. Clear differences between the mRNA profiles modulated by the three neurotrophin forms were identified. NGF and proNGF modulate remarkably distinct mRNA expression patterns, with the gene expression profile regulated by NGF being significantly more complex than that by proNGF, both in terms of the total number of differentially expressed mRNAs and of the gene families involved. Moreover, while the total number of genes modulated by NGF increases dramatically with time, that by proNGFs is unchanged or reduced. We identified a subset of regulated genes that could be ascribed to a "pure proNGF" signalling, distinct from the "pure NGF" one. We also conclude that the composition of mixed NGF and proNGF samples, when the two proteins coexist, influences the profile of gene expression. Based on this comparison of the gene expression profiles regulated by NGF and its proNGF precursor, we conclude that the two proteins activate largely distinct transcriptional programs and that the ratio of NGF to proNGF in vivo can profoundly influence the pattern of regulated mRNAs.


Assuntos
Fatores de Crescimento Neural/metabolismo , Células PC12 , Precursores de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Análise em Microsséries , Fatores de Crescimento Neural/genética , Precursores de Proteínas/genética , RNA Mensageiro/genética , Ratos
15.
J Neurosci ; 26(32): 8388-97, 2006 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-16899734

RESUMO

Moving from the evidence that activation of type 4 metabotropic glutamate (mGlu4) receptors inhibits proliferation and promotes differentiation of cerebellar granule cell neuroprogenitors, we examined the expression and function of mGlu4 receptors in medulloblastoma cells. mGlu4 receptors were expressed in 46 of 60 human medulloblastoma samples. Expression varied in relation to the histotype (nodular desmoplastic>classic>>large-cell anaplastic) and was inversely related to tumor severity, spreading, and recurrence. mGlu4 receptors were also found in D283med, D341med, and DAOY medulloblastoma cell lines, where receptor activation with the selective enhancer PHCCC inhibited adenylyl cyclase and the phosphatidylinositol-3-kinase pathway without affecting the mitogen-activated protein kinase, Sonic Hedgehog, and Wnt pathways. Interestingly, mGlu4 receptor activation reduced DNA synthesis and cell proliferation in all three cell lines. This effect was abrogated by the phosphatidylinositol-3-kinase inhibitor LY294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one]. In in vivo experiments, repeated subcutaneous injections of N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC) reduced the growth of D283med and DAOY cell xenografts in nude mice. More remarkably, subcutaneous or intracranial injections of PHCCC during the first week of life prevented the development of medulloblastomas in mice lacking one Patched-1 allele and x-irradiated 1 d after birth. These data suggest that mGlu4 receptor enhancers are promising drugs for the treatment of medulloblastomas.


Assuntos
Benzopiranos/administração & dosagem , Meduloblastoma/metabolismo , Meduloblastoma/prevenção & controle , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Meduloblastoma/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento
16.
Neuro Oncol ; 7(3): 236-45, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16053698

RESUMO

U87MG human glioma cells in cultures expressed metabotropic glutamate (mGlu) receptors mGlu2 and mGlu3. Addition of the mGlu2/3 receptor antagonist LY341495 to the cultures reduced cell growth, expression of cyclin D1/2, and activation of the MAP kinase and phosphatidylinositol-3-kinase pathways. This is in line with the evidence that activation of mGlu2/3 receptors sustains glioma cell proliferation. U87MG cells were either implanted under the skin (1x10(6) cells/0.5 ml) or infused into the caudate nucleus (0.5x10(6) cells/5 microl) of nude mice. Animals were treated for 28 days with mGlu receptor antagonists by means of subcutaneous osmotic minipumps. Treatments with LY341495 or (2S)-alpha-ethylglutamate (both infused at a rate of 1 mg/kg per day) reduced the size of tumors growing under the skin. Infusion of LY341495 (10 mg/kg per day) also reduced the growth of brain tumors, as assessed by magnetic resonance imaging analysis carried out every seven days. The effect of drug treatment was particularly evident during the exponential phase of tumor growth, that is, between the third and the fourth week following cell implantation. Immunohistochemical analysis showed that U87MG cells retained the expression of mGlu2/3 receptors when implanted into the brain of nude mice. These data suggest that mGlu2/3 receptor antagonists are of potential use in the experimental treatment of malignant gliomas.


Assuntos
Aminoácidos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glioma/tratamento farmacológico , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Xantenos/farmacologia , Animais , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D1/biossíntese , Ciclina D1/efeitos dos fármacos , Ciclina D2 , Ciclinas/biossíntese , Ciclinas/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Antígeno Ki-67/efeitos dos fármacos , Antígeno Ki-67/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Receptores de Glutamato Metabotrópico/efeitos dos fármacos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
J Neurochem ; 84(6): 1288-95, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12614329

RESUMO

Glial cell proliferation in culture is under the control of metabotropic glutamate (mGlu) receptors. We have examined whether this control extends to human glioma cells. Primary cultures were prepared from surgically removed human glioblastomas. RT-PCR combined with western blot analysis showed that most of the cultures (eight out of 11) expressed group-II mGlu receptors. In two selected cultures (MZC-12 and FCN-9), the mGlu2/3 receptor antagonist, LY341495, slowed cell proliferation when applied to the growth medium from the second day after plating. This effect was reversible because linear cell growth was restored after washing out the drug. LY341495 reduced glioma cell proliferation at concentrations lower than 100 nm, which are considered as selective for mGlu2/3 receptors. In addition, its action was mimicked by the putative mGlu2/3 receptor antagonist (2S)-alpha-ethylglutamate. The anti-proliferative effect of LY341495 was confirmed by measuring [methyl-3H]-thymidine incorporation in cultures arrested in G0 phase of the cell cycle and then stimulated to proliferate by the addition of 10% fetal calf serum or 100 ng/mL of epidermal growth factor (EGF). In cultures treated with EGF, LY341495 was also able to reduce the stimulation of the mitogen-activated protein kinase (MAPK) pathway, as well as the induction of cyclin D1. Both effects, as well as decreased [methyl-3H]-thymidine incorporation, were partially reduced by co-addition of the potent mGlu2/3 receptor agonist, LY379268. We conclude that activation of group-II mGlu receptors supports the growth of human glioma cells in culture and that antagonists of these receptors should be tested for their ability to reduce tumour growth in vivo.


Assuntos
Glioma/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Aminoácidos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Ciclina D1/metabolismo , Ciclina D2 , Ciclinas/metabolismo , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Glioma/tratamento farmacológico , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Timidina/farmacocinética , Trítio , Xantenos/farmacologia
18.
J Neurosci ; 22(13): 5403-11, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12097492

RESUMO

The chemokine RANTES is critically involved in neuroinflammation and has been implicated in the pathophysiology of multiple sclerosis. We examined the possibility that activation of G-protein-coupled metabotropic glutamate (mGlu) receptors regulates the formation of RANTES in glial cells. A 15 hr exposure of cultured astrocytes to tumor necrosis factor-alpha and interferon-gamma induced a substantial increase in both RANTES mRNA and extracellular RANTES levels. These increases were markedly reduced when astrocytes were coincubated with l-2-amino-4-phosphonobutanoate (l-AP-4), 4-phosphonophenylglycine, or l-serine-O-phosphate, which selectively activate group III mGlu receptor subtypes (i.e., mGlu4, -6, -7, and -8 receptors). Agonists of mGlu1/5 or mGlu2/3 receptors were virtually inactive. Inhibition of RANTES release produced by l-AP-4 was attenuated by the selective group III mGlu receptor antagonist (R,S)-alpha-methylserine-O-phosphate or by pretreatment of the cultures with pertussis toxin. Cultured astrocytes expressed mGlu4 receptors, and the ability of l-AP-4 to inhibit RANTES release was markedly reduced in cultures prepared from mGlu4 knock-out mice. This suggests that activation of mGlu4 receptors negatively modulates the production of RANTES in glial cells. We also examined the effect of l-AP-4 on the development of experimental allergic encephalomyelitis (EAE) in Lewis rats. l-AP-4 was subcutaneously infused for 28 d by an osmotic minipump that released 250 nl/hr of a solution of 250 mm of the drug. Detectable levels of l-AP-4 ( approximately 100 nm) were found in the brain dialysate of EAE rats. Infusion of l-AP-4 did not affect the time at onset and the severity of neurological symptoms but significantly increased the rate of recovery from EAE. In addition, lower levels of RANTES mRNA were found in the cerebellum and spinal cord of EAE rats infused with l-AP-4. These results suggest that pharmacological activation of group III mGlu receptors may be useful in the experimental treatment of neuroinflammatory CNS disorders.


Assuntos
Astrócitos/metabolismo , Quimiocina CCL5/biossíntese , Receptores de Glutamato Metabotrópico/agonistas , Aminobutiratos/farmacologia , Animais , Astrócitos/química , Astrócitos/efeitos dos fármacos , Células Cultivadas , Quimiocina CCL5/genética , Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Cinética , Leucócitos Mononucleares/metabolismo , Camundongos , RNA Mensageiro/biossíntese , Ratos , Ratos Endogâmicos Lew , Receptores de Glutamato Metabotrópico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA