Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36601773

RESUMO

TIM22 pathway cargos are essential for sustaining mitochondrial homeostasis as an excess of these proteins leads to proteostatic stress and cell death. Yme1 is an inner membrane metalloprotease that regulates protein quality control with chaperone-like and proteolytic activities. Although the mitochondrial translocase and protease machinery are critical for organelle health, their functional association remains unexplored. The present study unravels a novel genetic connection between the TIM22 complex and YME1 machinery in Saccharomyces cerevisiae that is required for maintaining mitochondrial health. Our genetic analyses indicate that impairment in the TIM22 complex rescues the respiratory growth defects of cells without Yme1. Furthermore, Yme1 is essential for the stability of the TIM22 complex and regulates the proteostasis of TIM22 pathway substrates. Moreover, impairment in the TIM22 complex suppressed the mitochondrial structural and functional defects of Yme1-devoid cells. In summary, excessive levels of TIM22 pathway substrates could be one of the reasons for respiratory growth defects of cells lacking Yme1, and compromising the TIM22 complex can compensate for the imbalance in mitochondrial proteostasis caused by the loss of Yme1.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Proteínas de Saccharomyces cerevisiae , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteostase , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteases Dependentes de ATP
2.
Nanoscale ; 11(9): 3855-3863, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30758009

RESUMO

Biocompatible nanoparticles with an intrinsic ability to mimic the cellular antioxidant enzymes are potential candidates for the development of new therapeutics for various oxidative stress related disorders. However, the understanding of the interaction and the mechanistic crosstalk between the nanoparticles and the cellular biomolecules is limited. Here we show that the multienzyme mimic manganese(ii,iii) oxide, Mn3O4, in nanoform (Mp) rescues the cells from oxidative damage induced by reactive oxygen species (ROS). The nanoparticles provide remarkable protection to biomolecules against the ROS-mediated protein oxidation, lipid peroxidation and DNA damage. Interestingly, the endogenous antioxidant machinery remains unaltered in the presence of these nanozymes, indicating the small molecule targeting of these nanoparticles in the cellular redox modulation. This study delineates the possible mechanism by which the nanoparticles provide protection to the cells against the adverse effects of oxidative stress. Based on our observation, we suggest that the multienzyme mimic Mn3O4 nanoparticles possess great potential in suppressing the oxidative stress-mediated pathophysiological conditions under which the antioxidant system is overwhelmed.


Assuntos
Antioxidantes/metabolismo , Compostos de Manganês/química , Nanopartículas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Óxidos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Glutationa/metabolismo , Células HEK293 , Humanos , Nanopartículas/química , Carbonilação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
3.
Crit Rev Biochem Mol Biol ; 54(6): 517-536, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31997665

RESUMO

The role of mitochondria within a cell has grown beyond being the prime source of cellular energy to one of the major signaling platforms. Recent evidence provides several insights into the crucial roles of mitochondrial chaperones in regulating the organellar response to external triggers. The mitochondrial Hsp70 (mtHsp70/Mortalin/Grp75) chaperone system plays a critical role in the maintenance of proteostasis balance in the organelle. Defects in mtHsp70 network result in attenuated protein transport and misfolding of polypeptides leading to mitochondrial dysfunction. The functions of Hsp70 are primarily governed by J-protein cochaperones. Although human mitochondria possess a single Hsp70, its multifunctionality is characterized by the presence of multiple specific J-proteins. Several studies have shown a potential association of Hsp70 and J-proteins with diverse pathological states that are not limited to their canonical role as chaperones. The role of mitochondrial Hsp70 and its co-chaperones in disease pathogenesis has not been critically reviewed in recent years. We evaluated some of the cellular interfaces where Hsp70 machinery associated with pathophysiological conditions, particularly in context of tumorigenesis and neurodegeneration. The mitochondrial Hsp70 machinery shows a variable localization and integrates multiple components of the cellular processes with varied phenotypic consequences. Although Hsp70 and J-proteins function synergistically in proteins folding, their precise involvement in pathological conditions is mainly idiosyncratic. This machinery is associated with a heterogeneous set of molecules during the progression of a disorder. However, the precise binding to the substrate for a specific physiological response under a disease subtype is still an undocumented area of analysis.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Animais , Sobrevivência Celular/fisiologia , Senescência Celular/fisiologia , Humanos , Saccharomyces cerevisiae/crescimento & desenvolvimento
4.
Artigo em Inglês | MEDLINE | ID: mdl-28828516

RESUMO

Iron-sulfur (Fe-S) clusters serve as a fundamental inorganic constituent of living cells ranging from bacteria to human. The importance of Fe-S clusters is underscored by their requirement as a co-factor for the functioning of different enzymes and proteins. The biogenesis of Fe-S cluster is a highly coordinated process which requires specialized cellular machinery. Presently, understanding of Fe-S cluster biogenesis in human draws meticulous attention since defects in the biogenesis process result in development of multiple diseases with unresolved solutions. Mitochondrion is the major cellular compartment of Fe-S cluster biogenesis, although cytosolic biogenesis machinery has been reported in eukaryotes, including in human. The core biogenesis pathway comprises two steps. The process initiates with the assembly of Fe-S cluster on a platform scaffold protein in the presence of iron and sulfur donor proteins. Subsequent process is the transfer and maturation of the cluster to a bonafide target protein. Human Fe-S cluster biogenesis machinery comprises the mitochondrial iron-sulfur cluster (ISC) assembly and export system along with the cytosolic Fe-S cluster assembly (CIA) machinery. Impairment in the Fe-S cluster machinery components results in cellular dysfunction leading to various mitochondrial pathophysiological consequences. The current review highlights recent developments and understanding in the domain of Fe-S cluster assembly biology in higher eukaryotes, particularly in human cells.


Assuntos
Proteínas Ferro-Enxofre/química , Mitocôndrias , Proteínas Mitocondriais/química , Citosol , Humanos
5.
Plant Mol Biol ; 94(4-5): 381-397, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28444544

RESUMO

Methylglyoxal (MG) is a key signaling molecule resulting from glycolysis and other metabolic pathways. During abiotic stress, MG levels accumulate to toxic levels in affected cells. However, MG is routinely detoxified through the action of DJ1/PARK7/Hsp31 proteins that are highly conserved across kingdoms and mutations in such genes are associated with neurodegenerative diseases. Here, we report for the first time that, similar to abiotic stresses, MG levels increase during biotic stresses in plants, likely contributing to enhanced susceptibility to a wide range of stresses. We show that overexpression of yeast Heat shock protein 31 (Hsp31), a DJ-1 homolog with robust MG detoxifying capabilities, confers dual biotic and abiotic stress tolerance in model plant Nicotiana tabacum. Strikingly, overexpression of Hsp31 in tobacco imparts robust stress tolerance against diverse biotic stress inducers such as viruses, bacteria and fungi, in addition to tolerance against a range of abiotic stress inducers. During stress, Hsp31 was targeted to mitochondria and induced expression of key stress-related genes. These results indicate that Hsp31 is a novel attractive tool to engineer plants against both biotic and abiotic stresses.


Assuntos
Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Aldeído Pirúvico/metabolismo , Alternaria , Proteínas de Choque Térmico/genética , Vírus do Mosaico , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Pseudomonas syringae , Estresse Fisiológico , Nicotiana/genética
6.
J Biol Chem ; 291(33): 17345-59, 2016 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-27330077

RESUMO

Mitochondrial J-proteins play a critical role in governing Hsp70 activity and, hence, are essential for organellar protein translocation and folding. In contrast to yeast, which has a single J-protein Pam18, humans involve two J-proteins, DnaJC15 and DnaJC19, associated with contrasting cellular phenotype, to transport proteins into the mitochondria. Mutation in DnaJC19 results in dilated cardiomyopathy and ataxia syndrome, whereas expression of DnaJC15 regulates the response of cancer cells to chemotherapy. In the present study we have comparatively assessed the biochemical properties of the J-protein paralogs in relation to their association with the import channel. Both DnaJC15 and DnaJC19 formed two distinct subcomplexes with Magmas at the import channel. Knockdown analysis suggested an essential role for Magmas and DnaJC19 in organellar protein translocation and mitochondria biogenesis, whereas DnaJC15 had dispensable supportive function. The J-proteins were found to have equal affinity for Magmas and could stimulate mitochondrial Hsp70 ATPase activity by equivalent levels. Interestingly, we observed that DnaJC15 exhibits bifunctional properties. At the translocation channel, it involves conserved interactions and mechanism to translocate the precursors into mitochondria. In addition to protein transport, DnaJC15 also showed a dual role in yeast where its expression elicited enhanced sensitivity of cells to cisplatin that required the presence of a functional J-domain. The amount of DnaJC15 expressed in the cell was directly proportional to the sensitivity of cells. Our analysis indicates that the differential cellular phenotype displayed by human mitochondrial J-proteins is independent of their activity and association with Magmas at the translocation channel.


Assuntos
Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP70/genética , Células HeLa , Humanos , Células MCF-7 , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Transporte Proteico/fisiologia
7.
Nat Commun ; 5: 5301, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25412933

RESUMO

Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson's and Alzheimer's disease.


Assuntos
Antioxidantes/metabolismo , Nanofios/química , Substâncias Protetoras/metabolismo , Vanadatos/metabolismo , Antioxidantes/química , Citoproteção , Glutationa/metabolismo , Dissulfeto de Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Oxirredução , Substâncias Protetoras/química , Espécies Reativas de Oxigênio/metabolismo , Vanadatos/química
8.
Mol Biol Cell ; 25(14): 2129-42, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24829379

RESUMO

Mitochondrial Hsp70 (mtHsp70) is essential for a vast repertoire of functions, including protein import, and requires effective interdomain communication for efficient partner-protein interactions. However, the in vivo functional significance of allosteric regulation in eukaryotes is poorly defined. Using integrated biochemical and yeast genetic approaches, we provide compelling evidence that a conserved substrate-binding domain (SBD) loop, L4,5, plays a critical role in allosteric communication governing mtHsp70 chaperone functions across species. In yeast, a temperature-sensitive L4,5 mutation (E467A) disrupts bidirectional domain communication, leading to compromised protein import and mitochondrial function. Loop L4,5 functions synergistically with the linker in modulating the allosteric interface and conformational transitions between SBD and the nucleotide-binding domain (NBD), thus regulating interdomain communication. Second-site intragenic suppressors of E467A isolated within the SBD suppress domain communication defects by conformationally altering the allosteric interface, thereby restoring import and growth phenotypes. Strikingly, the suppressor mutations highlight that restoration of communication from NBD to SBD alone is the minimum essential requirement for effective in vivo function when primed at higher basal ATPase activity, mimicking the J-protein-bound state. Together these findings provide the first mechanistic insights into critical regions within the SBD of mtHsp70s regulating interdomain communication, thus highlighting its importance in protein translocation and mitochondrial biogenesis.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Humanos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Renovação Mitocondrial , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
9.
Mol Cell Biol ; 34(10): 1757-75, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24636990

RESUMO

Mitochondria are indispensable organelles implicated in multiple aspects of cellular processes, including tumorigenesis. Heat shock proteins play a critical regulatory role in accurately delivering the nucleus-encoded proteins through membrane-bound presequence translocase (Tim23 complex) machinery. Although altered expression of mammalian presequence translocase components had been previously associated with malignant phenotypes, the overall organization of Tim23 complexes is still unsolved. In this report, we show the existence of three distinct Tim23 complexes, namely, B1, B2, and A, involved in the maintenance of normal mitochondrial function. Our data highlight the importance of Magmas as a regulator of translocase function and in dynamically recruiting the J-proteins DnaJC19 and DnaJC15 to individual translocases. The basic housekeeping function involves translocases B1 and B2 composed of Tim17b isoforms along with DnaJC19, whereas translocase A is nonessential and has a central role in oncogenesis. Translocase B, having a normal import rate, is essential for constitutive mitochondrial functions such as maintenance of electron transport chain complex activity, organellar morphology, iron-sulfur cluster protein biogenesis, and mitochondrial DNA. In contrast, translocase A, though dispensable for housekeeping functions with a comparatively lower import rate, plays a specific role in translocating oncoproteins lacking presequence, leading to reprogrammed mitochondrial functions and hence establishing a possible link between the TIM23 complex and tumorigenicity.


Assuntos
Mitocôndrias/enzimologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/enzimologia , Proliferação de Células , Variações do Número de Cópias de DNA , DNA Mitocondrial/genética , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/genética , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Subunidades Proteicas/metabolismo , Transporte Proteico
10.
J Biol Chem ; 289(15): 10359-10377, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24573684

RESUMO

Iron-sulfur (Fe-S) clusters are versatile cofactors involved in regulating multiple physiological activities, including energy generation through cellular respiration. Initially, the Fe-S clusters are assembled on a conserved scaffold protein, iron-sulfur cluster scaffold protein (ISCU), in coordination with iron and sulfur donor proteins in human mitochondria. Loss of ISCU function leads to myopathy, characterized by muscle wasting and cardiac hypertrophy. In addition to the homozygous ISCU mutation (g.7044G→C), compound heterozygous patients with severe myopathy have been identified to carry the c.149G→A missense mutation converting the glycine 50 residue to glutamate. However, the physiological defects and molecular mechanism associated with G50E mutation have not been elucidated. In this report, we uncover mechanistic insights concerning how the G50E ISCU mutation in humans leads to the development of severe ISCU myopathy, using a human cell line and yeast as the model systems. The biochemical results highlight that the G50E mutation results in compromised interaction with the sulfur donor NFS1 and the J-protein HSCB, thus impairing the rate of Fe-S cluster synthesis. As a result, electron transport chain complexes show significant reduction in their redox properties, leading to loss of cellular respiration. Furthermore, the G50E mutant mitochondria display enhancement in iron level and reactive oxygen species, thereby causing oxidative stress leading to impairment in the mitochondrial functions. Thus, our findings provide compelling evidence that the respiration defect due to impaired biogenesis of Fe-S clusters in myopathy patients leads to manifestation of complex clinical symptoms.


Assuntos
Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Miopatias Mitocondriais/genética , Mutação de Sentido Incorreto , Sequência de Aminoácidos , Respiração Celular , Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Células HeLa , Heterozigoto , Humanos , Ferro/química , Potenciais da Membrana , Miopatias Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutagênese , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Enxofre/química
11.
J Biol Chem ; 287(16): 13194-205, 2012 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-22367199

RESUMO

J-proteins are obligate cochaperones of Hsp70s and stimulate their ATPase activity via the J-domain. Although the functions of J-proteins have been well understood in the context of Hsp70s, their additional co-evolved "physiological functions" are still elusive. We report here the solution structure and mechanism of novel iron-mediated functional roles of human Dph4, a type III J-protein playing a vital role in diphthamide biosynthesis and normal development. The NMR structure of Dph4 reveals two domains: a conserved J-domain and a CSL-domain connected via a flexible linker-helix. The linker-helix modulates the conformational flexibility between the two domains, regulating thereby the protein function. Dph4 exhibits a unique ability to bind iron in tetrahedral coordination geometry through cysteines of its CSL-domain. The oxidized Fe-Dph4 shows characteristic UV-visible and electron paramagnetic resonance spectral properties similar to rubredoxins. Iron-bound Dph4 (Fe-Dph4) also undergoes oligomerization, thus potentially functioning as a transient "iron storage protein," thereby regulating the intracellular iron homeostasis. Remarkably, Fe-Dph4 exhibits vital redox and electron carrier activity, which is critical for important metabolic reactions, including diphthamide biosynthesis. Further, we observed that Fe-Dph4 is conformationally better poised to perform Hsp70-dependent functions, thus underlining the significance of iron binding in Dph4. Yeast Jjj3, a functional ortholog of human Dph4 also shows a similar iron-binding property, indicating the conserved nature of iron sequestration across species. Taken together, our findings provide invaluable evidence in favor of additional co-evolved specialized functions of J-proteins, previously not well appreciated.


Assuntos
Evolução Molecular , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Ferro/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Toxina Diftérica/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Leveduras/metabolismo , Dedos de Zinco/fisiologia
12.
J Biol Chem ; 286(21): 19001-13, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21474445

RESUMO

The evolutionary diversity of the HSP70 gene family at the genetic level has generated complex structural variations leading to altered functional specificity and mode of regulation in different cellular compartments. By utilizing Saccharomyces cerevisiae as a model system for better understanding the global functional cooperativity between Hsp70 paralogs, we have dissected the differences in functional properties at the biochemical level between mitochondrial heat shock protein 70 (mtHsp70) Ssc1 and an uncharacterized Ssc3 paralog. Based on the evolutionary origin of Ssc3 and a high degree of sequence homology with Ssc1, it has been proposed that both have a close functional overlap in the mitochondrial matrix. Surprisingly, our results demonstrate that there is no functional cross-talk between Ssc1 and Ssc3 paralogs. The lack of in vivo functional overlap is due to altered conformation and significant lower stability associated with Ssc3. The substrate-binding domain of Ssc3 showed poor affinity toward mitochondrial client proteins and Tim44 due to the open conformation in ADP-bound state. In addition to that, the nucleotide-binding domain of Ssc3 showed an altered regulation by the Mge1 co-chaperone due to a high degree of conformational plasticity, which strongly promotes aggregation. Besides, Ssc3 possesses a dysfunctional inter-domain interface thus rendering it unable to perform functions similar to generic Hsp70s. Moreover, we have identified the critical amino acid sequence of Ssc1 and Ssc3 that can "make or break" mtHsp70 chaperone function. Together, our analysis provides the first evidence to show that the nucleotide-binding domain of mtHsp70s plays a critical role in determining the functional specificity among paralogs and orthologs across kingdoms.


Assuntos
Sequência de Aminoácidos , ATPases Transportadoras de Cálcio/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , ATPases Transportadoras de Cálcio/genética , Proteínas de Choque Térmico HSP70/genética , Mitocôndrias/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Chaperonas Moleculares/genética , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
J Biomol NMR ; 49(1): 39-51, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21153044

RESUMO

Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective 'unlabeling' or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly (13)C/(15)N labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {(12)CO( i )-(15)N( i+1)}-filtered HSQC, which aids in linking the (1)H(N)/(15)N resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i - 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to (2)H labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of (14)N at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies.


Assuntos
Aminoácidos/química , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Sequência de Aminoácidos , Isótopos de Carbono/química , Marcação por Isótopo , Proteínas de Membrana Transportadoras/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Dados de Sequência Molecular , Isótopos de Nitrogênio/química , Proteínas de Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina/metabolismo
14.
J Biol Chem ; 285(25): 19472-82, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20392697

RESUMO

Mitochondria biogenesis requires the import of several precursor proteins that are synthesized in the cytosol. The mitochondrial heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of the mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 toward mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5 peptide as compared with the other Hsp70s. We observed that the two human mitochondrial matrix J-protein splice variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hsp70 escort protein (Hep) possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C terminus of mtHsp70 in a full-length context and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thus promoting a similar conformational change that leads to ATPase stimulation. Additionally, we highlight the biochemical defects of the mtHsp70 mutant (G489E) associated with a myelodysplastic syndrome.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Mitocôndrias/metabolismo , Trifosfato de Adenosina/química , Processamento Alternativo , Animais , Anisotropia , Bovinos , Células HeLa , Humanos , Microscopia de Fluorescência/métodos , Modelos Biológicos , Chaperonas Moleculares/química , Peptídeos/química , Isoformas de Proteínas , Tiossulfato Sulfurtransferase/química
15.
Hum Mol Genet ; 19(7): 1248-62, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20053669

RESUMO

Magmas, a conserved mammalian protein essential for eukaryotic development, is overexpressed in prostate carcinomas and cells exposed to granulocyte-macrophage colony-stimulating factor (GM-CSF). Reduced Magmas expression resulted in decreased proliferative rates in cultured cells. However, the cellular function of Magmas is still elusive. In this report, we have showed that human Magmas is an ortholog of Saccharomyces cerevisiae Pam16 having similar functions and is critical for protein translocation across mitochondrial inner membrane. Human Magmas shows a complete growth complementation of Deltapam16 yeast cells at all temperatures. On the basis of our analysis, we report that Magmas localizes into mitochondria and is peripherally associated with inner mitochondrial membrane in yeast and humans. Magmas forms a stable subcomplex with J-protein Pam18 or DnaJC19 through its C-terminal region and is tethered to TIM23 complex of yeast and humans. Importantly, amino acid alterations in Magmas leads to reduced stability of the subcomplex with Pam18 that results in temperature sensitivity and in vivo protein translocation defects in yeast cells. These observations highlight the central role of Magmas in protein import and mitochondria biogenesis. In humans, absence of a functional DnaJC19 leads to dilated cardiac myophathic syndrome (DCM), a genetic disorder with characteristic features of cardiac myophathy and neurodegeneration. We propose that the mutations resulting in decreased stability of functional Magmas:DnaJC19 subcomplex at human TIM23 channel leads to impaired protein import and cellular respiration in DCM patients. Together, we propose a model showing how Magmas:DnaJC19 subcomplex is associated with TIM23 complex and thus regulates mitochondrial import process.


Assuntos
Cardiomiopatia Dilatada/genética , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , Transporte Proteico , Amidina-Liases/metabolismo , Células Cultivadas , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Oxigenases de Função Mista/metabolismo , Mutação , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 102(35): 12419-24, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16105940

RESUMO

Translocation of proteins across the mitochondrial inner membrane is an essential process requiring an import motor having mitochondrial Hsp70 (mtHsp70) at its core. The J protein partner of mtHsp70, Pam18, is an integral part of this motor, serving to stimulate the ATPase activity of mtHsp70. Pam16, an essential protein having an inactive J domain that is unable to stimulate mtHsp70's ATPase activity, forms a heterodimer with Pam18, but its function is unknown. We set out to test the importance of three properties of Pam16: (i) a stable interaction between Pam16 and Pam18, (ii) the inability of Pam16's degenerate J domain to stimulate Ssc1's ATPase domain, and (iii) the innately lower stimulatory activity of the Pam16:Pam18 heterodimer, compared to Pam18 alone. Neither substantial reduction in the ability of Pam18 to stimulate Ssc1's ATPase activity, nor the presence of an active J domain in Pam16, had deleterious effects on cell growth, indicating the lack of importance of two of these biochemical properties. However, a stable interaction between Pam16's degenerate J domain and Pam18's J domain was found to be critical for function. Alterations that destabilized the Pam16:Pam18 heterodimer had deleterious effects on cell growth and mitochondrial protein import; intragenic suppressors that restored robust growth also restored heterodimer stability. Our results support the idea that Pam16's J-like domain strongly interacts with Pam18's J domain, leading to a productive interaction of Pam18 with mtHsp70 at the import channel.


Assuntos
Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transporte Biológico Ativo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismo , Dimerização , Membranas Intracelulares/metabolismo , Proteínas de Membrana Transportadoras/genética , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Motores Moleculares/genética , Proteínas Motores Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
17.
J Biol Chem ; 280(32): 28966-72, 2005 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15958384

RESUMO

Ssq1, a specialized yeast mitochondrial Hsp70, plays a critical role in the biogenesis of proteins containing Fe-S clusters through its interaction with Isu, the scaffold on which clusters are built. Two substitutions within the Ssq1 substrate binding cleft, both of which severely reduced affinity for Isu, had very different effects in vivo. Cells expressing Ssq1(F462S), which had no detectable affinity for Isu, are indistinguishable from Deltassq1 cells, underscoring the importance of the Ssq1-Isu1 interaction in vivo. In contrast, cells expressing Ssq1(V472F), whose affinity for Isu is at least 10-fold lower than that of wild-type Ssq1, had only moderately reduced Fe-S enzyme activities and increased iron levels and grew similarly to wild-type cells. Consistent with the reduced affinity for Isu, the ATPase activity of Ssq1(V472F) was stimulated less well than that of Ssq1 upon addition of Isu and Jac1, the J-protein partner of Ssq1. However, higher concentrations of Jac1 or Isu1, which form a stable complex, could compensate for this defect in stimulation of Ssq1(V472F). Expression of Isu1 was up-regulated 10-fold in ssq1(V472F) compared with wild-type cells, suggesting that formation of a Jac1-Isu1 complex can overcome a lowered affinity of Ssq1 for Isu in vivo as well as in vitro.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Ferro-Enxofre/química , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/metabolismo , Motivos de Aminoácidos , Anisotropia , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Glicerol/química , Ferro/metabolismo , Proteínas Mitocondriais , Chaperonas Moleculares/genética , Mutação , Peptídeos/química , Fenótipo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas de Saccharomyces cerevisiae/genética , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Temperatura
18.
Nat Struct Mol Biol ; 11(11): 1084-91, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15489862

RESUMO

Preproteins synthesized on cytosolic ribosomes, but destined for the mitochondrial matrix, pass through the presequence translocase of the inner membrane. Translocation is driven by the import motor, having at its core the essential chaperone mtHsp70 (Ssc1 in yeast). MtHsp70 is tethered to the translocon channel at the matrix side of the inner membrane by the peripheral membrane protein Tim44. A key question in mitochondrial import is how the mtHsp70-Tim44 interaction is regulated. Here we report that Tim44 interacts with both the ATPase and peptide-binding domains of mtHsp70. Disruption of these interactions upon binding of polypeptide substrates requires concerted conformational changes involving both domains of mtHsp70. Our results fit a model in which regulated interactions between Tim44 and mtHsp70, controlled by polypeptide binding, are required for efficient translocation across the mitochondrial inner membrane in vivo.


Assuntos
Proteínas de Choque Térmico HSP70/fisiologia , Membranas Intracelulares/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/química , Anisotropia , Transporte Biológico , Relação Dose-Resposta a Droga , Escherichia coli/metabolismo , Biblioteca Gênica , Proteínas de Choque Térmico HSP70/metabolismo , Hidrólise , Imunoprecipitação , Mitocôndrias/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Mutação , Peptídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Espectrometria de Fluorescência , Fatores de Tempo
19.
Proc Natl Acad Sci U S A ; 100(24): 13839-44, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14605210

RESUMO

The major Hsp70 of the mitochondrial matrix (Ssc1 in yeast) is critically important for the translocation of proteins from the cytosol, across the mitochondrial inner membrane, and into the matrix. Tim44, a peripheral inner membrane protein with limited sequence similarity to the J domain of J-type cochaperones, tethers Ssc1 to the import channel. Here we report that, unlike a J protein, Tim44 does not stimulate the ATPase activity of Ssc1, nor does it affect the stimulation by either a known mitochondrial J protein or a peptide substrate. Thus, we conclude that Tim44 does not function as a J protein cochaperone of Ssc1; rather, it tethers Ssc1 to the import channel through interactions independent of those critical for J protein function. However, a previously unstudied essential gene, PAM18, encodes an 18-kDa protein that contains a J domain and is localized to the mitochondrial inner membrane. Pam18 stimulates the ATPase activity of Ssc1; depletion of Pam18 in vivo disrupts import of proteins into the mitochondrial matrix. We propose that Pam18 is the J protein partner for Ssc1 at the import channel and is critical for Ssc1's function in protein import.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Mitocôndrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Transporte Biológico Ativo , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/genética , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
20.
Science ; 300(5616): 139-41, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12677068

RESUMO

Hsp70 of the mitochondrial matrix (mtHsp70) provides a critical driving force for the import of proteins into mitochondria. Tim44, a peripheral inner-membrane protein, tethers it to the import channel. Here, regulated interactions were found to maximize occupancy of the active, adenosine 5'-triphosphate (ATP)-bound mtHsp70 at the channel through its intrinsic high affinity for Tim44, as well as through release of adenosine diphosphate (ADP)-bound mtHsp70 from Tim44 by the cofactor Mge1. A model peptide substrate rapidly released mtHsp70 from Tim44, even in the absence of ATP hydrolysis. In vivo, the analogous interaction of translocating polypeptide would release mtHsp70 from the channel. Consistent with the ratchet model of translocation, subsequent hydrolysis of ATP would trap the polypeptide, driving import by preventing its movement back toward the cytosol.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Adenilil Imidodifosfato/farmacologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/farmacologia , Hidrólise , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/farmacologia , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Biológicos , Chaperonas Moleculares , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA