Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5687, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709732

RESUMO

The terminal differentiation of osteoblasts and subsequent formation of bone marks an important phase in palate development that leads to the separation of the oral and nasal cavities. While the morphogenetic events preceding palatal osteogenesis are well explored, major gaps remain in our understanding of the molecular mechanisms driving the formation of this bony union of the fusing palate. Through bulk, single-nucleus, and spatially resolved RNA-sequencing analyses of the developing secondary palate, we identify a shift in transcriptional programming between embryonic days 14.5 and 15.5 pinpointing the onset of osteogenesis. We define spatially restricted expression patterns of key osteogenic marker genes that are differentially expressed between these developmental timepoints. Finally, we identify genes in the palate highly expressed by palate nasal epithelial cells, also enriched within palatal osteogenic mesenchymal cells. This investigation provides a relevant framework to advance palate-specific diagnostic and therapeutic biomarker discovery.


Assuntos
Pesquisa Biomédica , Transcriptoma , Transcriptoma/genética , Osteogênese/genética , Perfilação da Expressão Gênica , Células Epiteliais
2.
Tissue Eng Part B Rev ; 27(3): 215-237, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32873216

RESUMO

Clefts of the lip and/or palate are the most prevalent orofacial birth defects occurring in about 1:700 live human births worldwide. Early postnatal surgical interventions are extensive and staged to bring about optimal growth and fusion of palatal shelves. Severe cleft defects pose a challenge to correct with surgery alone, resulting in complications and sequelae requiring life-long, multidisciplinary care. Advances made in materials science innovation, including scaffold-based delivery systems for precision tissue engineering, now offer new avenues for stimulating bone formation at the site of surgical correction for palatal clefts. In this study, we review the present scientific literature on key developmental events that can go awry in palate development and the common surgical practices and challenges faced in correcting cleft defects. How key osteoinductive pathways implicated in palatogenesis inform the design and optimization of constructs for cleft palate correction is discussed within the context of translation to humans. Finally, we highlight new osteogenic agents and innovative delivery systems with the potential to be adopted in engineering-based therapeutic approaches for the correction of palatal defects. Impact statement Tissue-engineered scaffolds supplemented with osteogenic growth factors have attractive, largely unexplored possibilities to modulate molecular signaling networks relevant to driving palatogenesis in the context of congenital anomalies (e.g., cleft palate). Constructs that address this need may obviate current use of autologous bone grafts, thereby avoiding donor-site morbidity and other regenerative challenges in patients afflicted with palatal clefts. Combinations of biomaterials and drug delivery of diverse regenerative cues and biologics are currently transforming strategies exploited by engineers, scientists, and clinicians for palatal cleft repair.


Assuntos
Fissura Palatina , Fissura Palatina/terapia , Humanos , Transdução de Sinais , Engenharia Tecidual , Alicerces Teciduais
3.
Tissue Eng Part B Rev ; 26(4): 301-312, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32085697

RESUMO

Human Wharton's jelly stem cells (HWJSC) can be efficiently isolated from the umbilical cord, and numerous reports have demonstrated that these cells can differentiate into several cell lineages. This fact, coupled with the high proliferation potential of HWJSC, makes them a promising source of stem cells for use in tissue engineering and regenerative medicine. However, their real potentiality has not been established to date. In the present study, we carried out a systematic review to determine the multilineage differentiation potential of HWJSC. After a systematic literature search, we selected 32 publications focused on the differentiation potential of these cells. Analysis of these studies showed that HWJSC display expanded differentiation potential toward some cell types corresponding to all three embryonic cell layers (ectodermal, mesodermal, and endodermal), which is consistent with their constitutive expression of key pluripotency markers such as OCT4, SOX2, and NANOG, and the embryonic marker SSEA4. We conclude that HWJSC can be considered cells in an intermediate state between multipotentiality and pluripotentiality, since their proliferation capability is not unlimited and differentiation to all cell types has not been demonstrated thus far. These findings support the clinical use of HWJSC for the treatment of diseases affecting not only mesoderm-type tissues but also other cell lineages. Impact statement Human Wharton's jelly stem cells (HWJSC) are mesenchymal stem cells that are easy to isolate and handle, and that readily proliferate. Their wide range of differentiation capabilities supports the view that these cells can be considered pluripotent. Accordingly, HWJSC are one of the most promising cell sources for clinical applications in advanced therapies.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Medicina Regenerativa , Células-Tronco/citologia , Humanos
4.
Am J Med Genet A ; 179(3): 442-447, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30703280

RESUMO

An international advisory group met at the National Institutes of Health in Bethesda, Maryland in 2017, to discuss a new classification system for the ectodermal dysplasias (EDs) that would integrate both clinical and molecular information. We propose the following, a working definition of the EDs building on previous classification systems and incorporating current approaches to diagnosis: EDs are genetic conditions affecting the development and/or homeostasis of two or more ectodermal derivatives, including hair, teeth, nails, and certain glands. Genetic variations in genes known to be associated with EDs that affect only one derivative of the ectoderm (attenuated phenotype) will be grouped as non-syndromic traits of the causative gene (e.g., non-syndromic hypodontia or missing teeth associated with pathogenic variants of EDA "ectodysplasin"). Information for categorization and cataloging includes the phenotypic features, Online Mendelian Inheritance in Man number, mode of inheritance, genetic alteration, major developmental pathways involved (e.g., EDA, WNT "wingless-type," TP63 "tumor protein p63") or the components of complex molecular structures (e.g., connexins, keratins, cadherins).


Assuntos
Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Fenótipo , Alelos , Biomarcadores , Bases de Dados Genéticas , Displasia Ectodérmica/metabolismo , Humanos , Transdução de Sinais
5.
SLAS Technol ; 24(1): 55-65, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29842850

RESUMO

Hydrogels are homogenous materials that are limited in their ability to form oriented multilayered architecture in three-dimensional (3D) tissue constructs. Current techniques have led to advancements in this area. Such techniques often require extra devices and/or involve complex processes that are inaccessible to many laboratories. Here is described a one-step methodology that permits reliable alignment of cells into multiple layers using a self-assembling multidomain peptide (MDP) hydrogels. We characterized the structural features, viability, and molecular properties of dental pulp cells fabricated with MDP and demonstrated that manipulation of the layering of cells in the scaffolds was achieved by decreasing the weight by volume percentage (w/v%) of MDP contained within the scaffold. This approach allows cells to remodel their environment and enhanced various gene expression profiles, such as cell proliferation, angiogenesis, and extracellular matrix (ECM) remodeling-related genes. We further validated our approach for constructing various architectural configurations of tissues by fabricating cells into stratified multilayered and tubular structures. Our methodology provides a simple, rapid way to generate 3D tissue constructs with multilayered architectures. This method shows great potential to mimic in vivo microenvironments for cells and may be of benefit in modeling more complex tissues in the field of regenerative medicine.


Assuntos
Polpa Dentária/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Peptídeos/metabolismo , Técnicas de Cultura de Tecidos/métodos , Alicerces Teciduais , Animais , Linhagem Celular , Camundongos
6.
Development ; 144(20): 3819-3828, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893947

RESUMO

Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9-/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2, proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9-/-Dkk1f/+;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9+/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero, while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders.


Assuntos
Fissura Palatina/genética , Fatores de Transcrição Box Pareados/genética , Palato/embriologia , Proteína Wnt1/agonistas , Proteína Wnt1/genética , Animais , Padronização Corporal , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Transgênicos , Morfogênese , Osteogênese , Fator de Transcrição PAX9 , Fenótipo , Ligação Proteica , Via de Sinalização Wnt
7.
Biomaterials ; 52: 71-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25818414

RESUMO

Delivery of small molecules and drugs to tissues is a mainstay of several tissue engineering strategies. Next generation treatments focused on localized drug delivery offer a more effective means in dealing with refractory healing when compared to systemic approaches. Here we describe a novel multidomain peptide hydrogel that capitalizes on synthetic peptide chemistry, supramolecular self-assembly and cytokine delivery to tailor biological responses. This material is biomimetic, shows shear stress recovery and offers a nanofibrous matrix that sequesters cytokines. The biphasic pattern of cytokine release results in the spatio-temporal activation of THP-1 monocytes and macrophages. Furthermore, macrophage-material interactions are promoted without generation of a proinflammatory environment. Subcutaneous implantation of injectable scaffolds showed a marked increase in macrophage infiltration and polarization dictated by cytokine loading as early as 3 days, with complete scaffold resorption by day 14. Macrophage interaction and response to the peptide composite facilitated the (i) recruitment of monocytes/macrophages, (ii) sustained residence of immune cells until degradation, and (iii) promotion of a pro-resolution M2 environment. Our results suggest the potential use of this injectable cytokine loaded hydrogel scaffold in a variety of tissue engineering applications.


Assuntos
Citocinas/administração & dosagem , Sistemas de Liberação de Medicamentos , Macrófagos/efeitos dos fármacos , Peptídeos/química , Alicerces Teciduais/química , Sequência de Aminoácidos , Animais , Linhagem Celular , Citocinas/imunologia , Citocinas/farmacologia , Feminino , Humanos , Macrófagos/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Nanofibras/química , Nanofibras/ultraestrutura , Ratos Wistar
8.
Tissue Eng Part A ; 20(15-16): 2162-8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25140989

RESUMO

Cell-based treatments are being developed as a novel approach for the treatment of many diseases in an effort to repair injured tissues and regenerate lost tissues. Interest in the potential use of multipotent progenitor or stem cells has grown significantly in recent years, specifically the use of mesenchymal stem cells (MSCs), for tissue engineering in combination with extracellular matrix-based scaffolds. An area that warrants further attention is the local or systemic host responses toward the implanted cell-biomaterial constructs. Such immunological responses could play a major role in determining the clinical efficacy of the therapeutic device or biomaterials used. MSCs, due to their unique immunomodulatory properties, hold great promise in tissue engineering as they not only directly participate in tissue repair and regeneration but also modulate the host foreign body response toward the engineered constructs. The purpose of this review was to summarize the current state of knowledge and applications of MSC-biomaterial constructs as a potential immunoregulatory tool in tissue engineering. Better understanding of the interactions between biomaterials and cells could translate to the development of clinically relevant and novel cell-based therapeutics for tissue reconstruction and regenerative medicine.


Assuntos
Materiais Biocompatíveis/farmacologia , Imunomodulação/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Reação a Corpo Estranho/patologia , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos
9.
PLoS One ; 9(6): e99331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24971743

RESUMO

BACKGROUND: Twist1 and Twist2 are highly homologous bHLH transcription factors that exhibit extensive highly overlapping expression profiles during development. While both proteins have been shown to inhibit osteogenesis, only Twist1 haploinsufficiency is associated with the premature synostosis of cranial sutures in mice and humans. On the other hand, biallelic Twist2 deficiency causes only a focal facial dermal dysplasia syndrome or additional cachexia and perinatal lethality in certain mouse strains. It is unclear how these proteins cooperate to synergistically regulate bone formation. METHODS: Twist1 floxed mice (Twist1(f/f)) were bred with Twist2-Cre knock-in mice (Twist2(Cre/+)) to generate Twist1 and Twist2 haploinsufficient mice (Twist1(f/+); Twist2(Cre/+)). X-radiography, micro-CT scans, alcian blue/alizarin red staining, trap staining, BrdU labeling, immunohistochemistry, in situ hybridizations, real-time PCR and dual luciferase assay were employed to investigate the overall skeletal defects and the bone-associated molecular and cellular changes of Twist1(f/+);Twist2(Cre/+) mice. RESULTS: Twist1 and Twist2 haploinsufficient mice did not present with premature ossification and craniosynostosis; instead they displayed reduced bone formation, impaired proliferation and differentiation of osteoprogenitors. These mice exhibited decreased expressions of Fgf2 and Fgfr1-4 in bone, resulting in a down-regulation of FGF signaling. Furthermore, in vitro studies indicated that both Twist1 and Twist2 stimulated 4.9 kb Fgfr2 promoter activity in the presence of E12, a Twist binding partner. CONCLUSION: These data demonstrated that Twist1- and Twist2-haploinsufficiency caused reduced bone formation due to compromised FGF signaling.


Assuntos
Desenvolvimento Ósseo , Haploinsuficiência , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína 1 Relacionada a Twist/genética , Animais , Fator 2 de Crescimento de Fibroblastos/genética , Fator 2 de Crescimento de Fibroblastos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Repressoras/metabolismo , Proteína 1 Relacionada a Twist/metabolismo
10.
Am J Med Genet A ; 164A(10): 2455-60, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24700731

RESUMO

Mutations in the WNT10A gene were first detected in the rare syndrome odonto-onycho-dermal dysplasia (OODD, OMIM257980) but have now also been found to cause about 35-50% of selective tooth agenesis (STHAG4, OMIM150400), a common disorder that mostly affects the permanent dentition. In our random sample of tooth agenesis patients, 40% had at least one mutation in the WNT10A gene. The WNT10A Phe228Ile variant alone reached an allele frequency of 0.21 in the tooth agenesis cohort, about 10 times higher than the allele frequency reported in large SNP databases for Caucasian populations. Patients with bi-allelic WNT10A mutations have severe tooth agenesis while heterozygous individuals are either unaffected or have a mild phenotype. Mutations in the coding areas of the WNT10B gene, which is co-expressed with WNT10A during odontogenesis, and the WNT6 gene which is located at the same chromosomal locus as WNT10A in humans, do not contribute to the tooth agenesis phenotype.


Assuntos
Displasia Ectodérmica/genética , Anormalidades Dentárias/genética , Proteínas Wnt/genética , Alelos , Anodontia , Frequência do Gene/genética , Heterozigoto , Humanos , Mutação/genética , Odontogênese/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Dente/patologia
11.
J Endod ; 40(4 Suppl): S6-12, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24698696

RESUMO

In dentistry, the maintenance of a vital dental pulp is of paramount importance because teeth devitalized by root canal treatment may become more brittle and prone to structural failure over time. Advanced carious lesions can irreversibly damage the dental pulp by propagating a sustained inflammatory response throughout the tissue. Although the inflammatory response initially drives tissue repair, sustained inflammation has an enormously destructive effect on the vital pulp, eventually leading to total necrosis of the tissue and necessitating its removal. The implications of tooth devitalization have driven significant interest in the development of bioactive materials that facilitate the regeneration of damaged pulp tissues by harnessing the capacity of the dental pulp for self-repair. In considering the process by which pulpitis drives tissue destruction, it is clear that an important step in supporting the regeneration of pulpal tissues is the attenuation of inflammation. Macrophages, key mediators of the immune response, may play a critical role in the resolution of pulpitis because of their ability to switch to a proresolution phenotype. This process can be driven by the resolvins, a family of molecules derived from fatty acids that show great promise as therapeutic agents. In this review, we outline the importance of preserving the capacity of the dental pulp to self-repair through the rapid attenuation of inflammation. Potential treatment modalities, such as shifting macrophages to a proresolving phenotype with resolvins are described, and a range of materials known to support the regeneration of dental pulp are presented.


Assuntos
Polpa Dentária/fisiologia , Pulpite/prevenção & controle , Regeneração/fisiologia , Alicerces Teciduais , Materiais Biocompatíveis/uso terapêutico , Necrose da Polpa Dentária/prevenção & controle , Ácidos Docosa-Hexaenoicos/fisiologia , Ácido Eicosapentaenoico/fisiologia , Humanos , Macrófagos/imunologia , Dente não Vital/prevenção & controle
12.
J Biol Chem ; 288(40): 28952-61, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-23979135

RESUMO

A constant supply of epithelial cells from dental epithelial stem cell (DESC) niches in the cervical loop (CL) enables mouse incisors to grow continuously throughout life. Elucidation of the cellular and molecular mechanisms underlying this unlimited growth potential is of broad interest for tooth regenerative therapies. Fibroblast growth factor (FGF) signaling is essential for the development of mouse incisors and for maintenance of the CL during prenatal development. However, how FGF signaling in DESCs controls the self-renewal and differentiation of the cells is not well understood. Herein, we report that FGF signaling is essential for self-renewal and the prevention of cell differentiation of DESCs in the CL as well as in DESC spheres. Inhibiting the FGF signaling pathway decreased proliferation and increased apoptosis of the cells in DESC spheres. Suppressing FGFR or its downstream signal transduction pathways diminished Lgr5-expressing cells in the CL and promoted cell differentiation both in DESC spheres and the CL. Furthermore, disruption of the FGF pathway abrogated Wnt signaling to promote Lgr5 expression in DESCs both in vitro and in vivo. This study sheds new light on understanding the mechanism by which the homeostasis, expansion, and differentiation of DESCs are regulated.


Assuntos
Células Epiteliais/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Células-Tronco/citologia , Dente/citologia , Animais , Ciclo Celular , Diferenciação Celular , Proliferação de Células , Células Epiteliais/enzimologia , Sistema de Sinalização das MAP Quinases , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/metabolismo , Células-Tronco/enzimologia , Regulação para Cima , Proteínas Wnt/metabolismo
13.
Stem Cell Res ; 11(3): 990-1002, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23906788

RESUMO

Understanding the cellular and molecular mechanisms underlying the self-renewal and differentiation of dental epithelial stem cells (DESCs) that support the unlimited growth potential of mouse incisors is critical for developing novel tooth regenerative therapies and unraveling the pathogenesis of odontogenic tumors. However, analysis of DESC properties and regulation has been limited by the lack of an in vitro assay system and well-documented DESC markers. Here, we describe an in vitro sphere culture system to isolate the DESCs from postnatal mouse incisor cervical loops (CLs) where the DESCs are thought to reside. The dissociated cells from CLs were able to expand and form spheres for multiple generations in the culture system. Lineage tracing indicated that DESC within the spheres were epithelial in origin as evident by lineage tracing. Upon stimulation, the sphere cells differentiated into cytokeratin 14- and amelogenin-expressing and mineral material-producing cells. Compared to the CL tissue, sphere cells expressed high levels of expression of Sca-1, CD49f (also designated as integrin α6), and CD44. Fluorescence-activated cell sorting (FACS) analyses of mouse incisor CL cells further showed that the CD49f(Bright) population was enriched in sphere-forming cells. In addition, the CD49f(Bright) population includes both slow-cycling and Lgr5(+) DESCs. The in vitro sphere culture system and identification of CD49f(Bright) as a DESC marker provide a novel platform for enriching DESCs, interrogating how maintenance, cell fate determination, and differentiation of DESCs are regulated, and developing tooth regenerative therapies.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Incisivo/citologia , Células-Tronco/citologia , Animais , Antígenos Ly/genética , Antígenos Ly/metabolismo , Biomarcadores/metabolismo , Linhagem da Célula , Células Cultivadas , Células Epiteliais/metabolismo , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Incisivo/metabolismo , Integrina alfa6/genética , Integrina alfa6/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/metabolismo , Células-Tronco/metabolismo
14.
J Biol Chem ; 288(10): 7204-14, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23349460

RESUMO

Dentin matrix protein 1 (DMP1) and dentin sialophosphoprotein (DSPP) are essential for the formation of dentin. Previous in vitro studies have indicated that DMP1 might regulate the expression of DSPP during dentinogenesis. To examine whether DMP1 controls dentinogenesis through the regulation of DSPP in vivo, we cross-bred transgenic mice expressing normal DSPP driven by a 3.6-kb rat Col1a1 promoter with Dmp1 KO mice to generate mice expressing the DSPP transgene in the Dmp1 KO genetic background (referred to as "Dmp1 KO/DSPP Tg mice"). We used morphological, histological, and biochemical techniques to characterize the dentin and alveolar bone of Dmp1 KO/DSPP Tg mice compared with Dmp1 KO and wild-type mice. Our analyses showed that the expression of endogenous DSPP was remarkably reduced in the Dmp1 KO mice. Furthermore, the transgenic expression of DSPP rescued the tooth and alveolar bone defects of the Dmp1 KO mice. In addition, our in vitro analyses showed that DMP1 and its 57-kDa C-terminal fragment significantly up-regulated the Dspp promoter activities in a mesenchymal cell line. In contrast, the expression of DMP1 was not altered in the Dspp KO mice. These results provide strong evidence that DSPP is a downstream effector molecule that mediates the roles of DMP1 in dentinogenesis.


Assuntos
Dentinogênese/genética , Proteínas da Matriz Extracelular/genética , Fosfoproteínas/genética , Sialoglicoproteínas/genética , Anormalidades Dentárias/genética , Animais , Biglicano/genética , Biglicano/metabolismo , Diferenciação Celular/genética , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Mandíbula/diagnóstico por imagem , Mandíbula/crescimento & desenvolvimento , Mandíbula/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Odontoblastos/citologia , Odontoblastos/metabolismo , Fosfoproteínas/metabolismo , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sialoglicoproteínas/metabolismo , Dente/diagnóstico por imagem , Dente/crescimento & desenvolvimento , Dente/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Microtomografia por Raio-X
15.
Dev Dyn ; 241(11): 1708-15, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22972545

RESUMO

BACKGROUND: Supernumerary teeth are often observed in patients suffering from cleidocranial dysplasia due to a mutation in Runx2 that results in haploinsufficiency. However, the underlying molecular mechanisms are poorly defined. In this study, we assessed the roles of Runx2 and its functional antagonist Twist1 in regulating fibroblast growth factor (FGF) signaling using in vitro biochemical approaches. RESULTS: We showed that Twist1 stimulated Fgfr2 and Fgf10 expression in a mesenchymal cell line and that it formed heterodimers with ubiquitously expressed E12 (together with E47 encoded by E2A gene) and upregulated Fgfr2 and Fgf10 promoter activities in a dental mesenchyme-derived cell line. We further demonstrated that the bHLH domain of Twist1 was essential for its synergistic activation of Fgfr2 promoter with E12 and that the binding of E12 stabilized Twist1 by preventing it from undergoing lysosomal degradation. Although Runx2 had no apparent effects on Fgfr2 and Fgf10 promoter activities, it inhibited the stimulatory activity of Twist1 on Fgfr2 promoter. CONCLUSIONS: These findings suggest that Runx2 haploinsufficiency might result in excessive unbound Twist1 that can freely bind to E12 and enhance FGF signaling, thereby promoting the formation of extra teeth.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Western Blotting , Linhagem Celular , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Eletroforese em Gel de Poliacrilamida , Fator 10 de Crescimento de Fibroblastos/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Imunoprecipitação , Camundongos , Proteínas Nucleares/genética , Reação em Cadeia da Polimerase , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína 1 Relacionada a Twist/genética
16.
Tissue Eng Part A ; 18(1-2): 176-84, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21827280

RESUMO

Root canal therapy is common practice in dentistry. During this procedure, the inflamed or necrotic dental pulp is removed and replaced with a synthetic material. However, recent research provides evidence that engineering of dental pulp and dentin is possible by using biologically driven approaches. As tissue engineering strategies hold the promise to soon supersede conventional root canal treatment, there is a need for customized scaffolds for stem cell delivery or recruitment. We hypothesize that the incorporation of dental pulp-derived stem cells with bioactive factors into such a scaffold can promote cell proliferation, differentiation, and angiogenesis. In this study, we used a cell adhesive, enzyme-cleavable hydrogel made from self-assembling peptide nanofibers to encapsulate dental pulp stem cells. The growth factors (GFs) fibroblast growth factor basic, transforming growth factor ß1, and vascular endothelial growth factor were incorporated into the hydrogel via heparin binding. Release profiles were established, and the influence of GFs on cell morphology and proliferation was assessed to confirm their bioactivity after binding and subsequent release. Cell morphology and spreading in three-dimensional cultures were visualized by using cell tracker and histologic stains. Subcutaneous transplantation of the hydrogel within dentin cylinders into immunocompromised mice led to the formation of a vascularized soft connective tissue similar to dental pulp. These data support the use of this novel biomaterial as a highly promising candidate for future treatment concepts in regenerative endodontics.


Assuntos
Polpa Dentária/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacologia , Peptídeos/farmacologia , Engenharia Tecidual/métodos , Animais , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Células Cultivadas , Meios de Cultura/farmacologia , Polpa Dentária/citologia , Polpa Dentária/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cinética , Camundongos , Nanofibras/química , Peptídeos/química , Transplante de Células-Tronco , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Tela Subcutânea/efeitos dos fármacos
17.
J Endod ; 37(11): 1536-41, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22000458

RESUMO

INTRODUCTION: Recent successes in dental pulp engineering indicate that regenerative treatment strategies in endodontics are feasible. Clinically, revascularization procedures render completion of root formation in immature teeth. The generation of a pulp-like tissue after seeding of dental pulp stem cells into dentin discs or cylinders and transplantation in vivo is possible. In this experimental setup, which mimics the situation in the root canal, the pretreatment of dentin might influence cellular behavior at the cell-dentin interface. Thus, the objective of this study was to investigate whether dentin conditioning can determine cell fate. METHODS: Dental pulp stem cells (DPSCs) were seeded into a growth factor-laden peptide hydrogel, transferred into dentin cylinders, and transplanted subcutaneously into immunocompromised mice. Before cell seeding, dentin cylinders were either pretreated with sodium hypochloride (NaOCl) or conditioned with EDTA. The constructs were explanted after 6 weeks and subjected to histological and immunohistochemical analysis. RESULTS: In dentin treated with NaOCl, resorption lacunae were found at the cell-dentin interface created by multinucleated cells with clastic activity. After conditioning with EDTA, DPSCs adjacent to the dentin formed an intimate association with the surface, differentiated into odontoblasts-like cells that expressed dentin sialoprotein, and extended cellular processes into the dentinal tubules. A vascularized soft connective tissue similar to dental pulp was observed inside the dentin cylinder. CONCLUSIONS: Dentin conditioning considerably influences DPSC fate when seeded in close proximity to dentin. This information might be critical for optimized strategic planning for future regenerative endodontic treatment.


Assuntos
Polpa Dentária/citologia , Dentina/efeitos dos fármacos , Células-Tronco Mesenquimais , Odontoblastos/metabolismo , Regeneração , Irrigantes do Canal Radicular/farmacologia , Engenharia Tecidual/métodos , Animais , Diferenciação Celular , Polpa Dentária/irrigação sanguínea , Polpa Dentária/fisiologia , Dentina/ultraestrutura , Ácido Edético/farmacologia , Proteínas da Matriz Extracelular/biossíntese , Feminino , Humanos , Hidrogéis , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos SCID , Odontoblastos/citologia , Fosfoproteínas/biossíntese , Sialoglicoproteínas/biossíntese , Hipoclorito de Sódio/farmacologia , Alicerces Teciduais
18.
Regen Med ; 6(2): 191-200, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21391853

RESUMO

AIM: Postnatal stem cells can generate tooth-specific structures after transplantation in vivo, which makes them a valuable tool for dental tissue engineering. Scaffold materials that are compatible with dental stem cells, injectable and tunable for targeted regeneration are needed. A candidate material is fibrin, a biopolymer critical to hemostasis and wound healing. Rapid degradation of fibrin can be decelerated by modification with polyethylene glycol (PEG), thus creating a hybrid material for cell delivery. The aim of this study was to evaluate the suitability of PEGylated fibrin as a scaffold for dental stem cells. METHODS: A PEGylated fibrin hydrogel was combined with stem cells derived from dental pulp or periodontal ligament. Cell proliferation was assessed over a 4-week period, and alkaline phosphatase activity and expression levels of mineralization-associated genes after osteogenic induction were analyzed. Cell morphology, matrix degradation, collagen production and mineral deposition were evaluated by histology. Constructs of PEGylated fibrin with dental pulp stem cells in dentin disks were transplanted in immunocompromised mice for 5 weeks and examined for new tissue formation. RESULTS: All cell types proliferated in PEGylated fibrin. After osteogenic induction, alkaline phosphatase activity was higher and osteoblast-specific genes were upregulated. Dentin-specific markers increased in pulp-derived stem cells. Histologic analysis revealed degradation of fibrin, production of a collagenous matrix and mineral deposition. In vivo transplantation rendered a vascularized soft connective tissue similar to dental pulp. CONCLUSION: Fibrin allows for the growth and differentiation of dental stem cells, can be inserted into small defects and thus appears to be a promising biomaterial for tissue regeneration in the oral cavity.


Assuntos
Bioengenharia/métodos , Fibrina/química , Géis/química , Polietilenoglicóis/química , Células-Tronco/citologia , Células-Tronco/fisiologia , Dente/citologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Fibrina/farmacologia , Géis/farmacologia , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Polietilenoglicóis/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Alicerces Teciduais/química , Dente/metabolismo
19.
J Am Chem Soc ; 132(9): 3217-23, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20158218

RESUMO

Multidomain peptides are a class of amphiphilic self-assembling peptides with a modular ABA block motif in which the amphiphilic B block drives self-assembly while the flanking A blocks, which are electrostatically charged, control the conditions under which assembly takes place. Previously we have shown that careful selection of the amino acids in the A and B blocks allow one to control the self-assembled fiber length and viscoelastic properties of formed hydrogels. Here we demonstrate how the modular nature of this peptide assembler can be designed for biological applications. With control over fiber length and diameter, gelation conditions, and viscoelastic properties, we can develop suitable materials for biological applications. Going beyond a simple carrier for cell delivery, a biofunctional scaffold will interact with the cells it carries, promoting advantageous cell-matrix interactions. We demonstrate the design of a multidomain peptide into a bioactive variant by incorporation of a matrix metalloprotease 2 (MMP-2) specific cleavage site and cell adhesion motif. Gel formation and rheological properties were assessed and compared to related peptide hydrogels. Proteolytic degradation by collagenase IV was observed in a gel weight loss study and confirmed by specific MMP-2 degradation monitored by mass spectrometry and cryo-transmission electron microscopy (cryo-TEM). Combination of this cleavage site with the cell adhesion motif RGD resulted in increased cell viability and cell spreading and encouraged cell migration into the hydrogel matrix. Collectively the structural, mechanical, and bioactive properties of this multidomain peptide hydrogel make it suitable as an injectable material for a variety of tissue engineering applications.


Assuntos
Movimento Celular , Tamanho Celular , Endopeptidases/metabolismo , Hidrogéis/síntese química , Peptídeos/química , Adesão Celular , Proliferação de Células , Células Cultivadas , Endopeptidases/química , Humanos , Hidrogéis/química , Dente Decíduo/citologia
20.
Eur J Hum Genet ; 18(1): 19-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19623212

RESUMO

Mutations of the Ectodysplasin-A (EDA) gene are generally associated with the syndrome hypohidrotic ectodermal dysplasia (MIM 305100), but they can also manifest as selective, non-syndromic tooth agenesis (MIM300606). We have performed an in vitro functional analysis of six selective tooth agenesis-causing EDA mutations (one novel and five known) that are located in the C-terminal tumor necrosis factor homology domain of the protein. Our study reveals that expression, receptor binding or signaling capability of the mutant EDA1 proteins is only impaired in contrast to syndrome-causing mutations, which we have previously shown to abolish EDA1 expression, receptor binding or signaling. Our results support a model in which the development of the human dentition, especially of anterior teeth, requires the highest level of EDA-receptor signaling, whereas other ectodermal appendages, including posterior teeth, have less stringent requirements and form normally in response to EDA mutations with reduced activity.


Assuntos
Ectodisplasinas/genética , Mutação/genética , Anormalidades Dentárias/genética , Sequência de Aminoácidos , Linhagem Celular , Criança , Análise Mutacional de DNA , Ectodisplasinas/química , Receptor Edar/metabolismo , Feminino , Humanos , Masculino , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA