Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Immunol Res ; 2024: 2264799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343633

RESUMO

Macrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-γ. We also demonstrate that RND3 increases NOTCH signaling in macrophages by favoring NOTCH1 expression and its nuclear activity; however, Rnd3 expression seems to be inhibited by NOTCH signaling, setting up a negative regulatory feedback loop. Moreover, increased RND3 protein levels seem to potentiate NFκB and STAT1 transcriptional activity resulting in increased expression of proinflammatory genes, such as Tnf-α, Irf-1, or Cxcl-10. Altogether, our results indicate that RND3 seems to be a new regulatory element which could control the activation of macrophages, able to fine tune the inflammatory response through NOTCH.


Assuntos
Macrófagos , Transdução de Sinais , Proteínas rho de Ligação ao GTP , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Camundongos , Proteínas rho de Ligação ao GTP/metabolismo
2.
Int Immunol ; 35(10): 497-509, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37478314

RESUMO

IL-13 signaling polarizes macrophages to an M2 alternatively activated phenotype, which regulates tissue repair and anti-inflammatory responses. However, an excessive activation of this pathway leads to severe pathologies, such as allergic airway inflammation and asthma. In this work, we identified NOTCH4 receptor as an important modulator of M2 macrophage activation. We show that the expression of NOTCH4 is induced by IL-13, mediated by Janus kinases and AP1 activity, probably mediated by the IL-13Rα1 and IL-13Rα2 signaling pathway. Furthermore, we demonstrate an important role for NOTCH4 signaling in the IL-13 induced gene expression program in macrophages, including various genes that contribute to pathogenesis of the airways in asthma, such as ARG1, YM1, CCL24, IL-10, or CD-163. We also demonstrate that NOTCH4 signaling modulates IL-13-induced gene expression by increasing IRF4 activity, mediated, at least in part, by the expression of the histone H3K27me3 demethylase JMJD3, and by increasing AP1-dependent transcription. In summary, our results provide evidence for an important role of NOTCH4 signaling in alternative activation of macrophages by IL-13 and suggest that NOTCH4 may contribute to the increased severity of lesions in M2 inflammatory responses, such as allergic asthma, which points to NOTCH4 as a potential new target for the treatment of these pathologies.


Assuntos
Asma , Interleucina-13 , Humanos , Macrófagos/metabolismo , Inflamação/metabolismo , Transdução de Sinais/genética , Receptor Notch4/metabolismo
3.
Cells ; 9(9)2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899774

RESUMO

The NOTCH family of receptors and ligands is involved in numerous cell differentiation processes, including adipogenesis. We recently showed that overexpression of each of the four NOTCH receptors in 3T3-L1 preadipocytes enhances adipogenesis and modulates the acquisition of the mature adipocyte phenotype. We also revealed that DLK proteins modulate the adipogenesis of 3T3-L1 preadipocytes and mesenchymal C3H10T1/2 cells in an opposite way, despite their function as non-canonical inhibitory ligands of NOTCH receptors. In this work, we used multipotent C3H10T1/2 cells as an adipogenic model. We used standard adipogenic procedures and analyzed different parameters by using quantitative-polymerase chain reaction (qPCR), quantitative reverse transcription-polymerase chain reaction (qRT-PCR), luciferase, Western blot, and metabolic assays. We revealed that C3H10T1/2 multipotent cells show higher levels of NOTCH receptors expression and activity and lower Dlk gene expression levels than 3T3-L1 preadipocytes. We found that the overexpression of NOTCH receptors enhanced C3H10T1/2 adipogenesis levels, and the overexpression of NOTCH receptors and DLK (DELTA-like homolog) proteins modulated the conversion of cells towards a brown-like adipocyte phenotype. These and our prior results with 3T3-L1 preadipocytes strengthen the idea that, depending on the cellular context, a precise and highly regulated level of global NOTCH signaling is necessary to allow adipogenesis and determine the mature adipocyte phenotype.


Assuntos
Tecido Adiposo Marrom/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Receptores Notch/metabolismo , Animais , Diferenciação Celular , Células HEK293 , Humanos , Camundongos , Transfecção
4.
Sci Rep ; 10(1): 14839, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908186

RESUMO

Macrophage activation by Toll receptors is an essential event in the development of the response against pathogens. NOTCH signaling pathway is involved in the control of macrophage activation and the inflammatory processes. In this work, we have characterized NOTCH signaling in macrophages activated by Toll-like receptor (TLR) triggering and determined that DLL1 and DLL4 are the main ligands responsible for NOTCH signaling. We have identified ADAM10 as the main protease implicated in NOTCH processing and activation. We have also observed that furin, which processes NOTCH receptors, is induced by TLR signaling in a NOTCH-dependent manner. NOTCH3 is the only NOTCH receptor expressed in resting macrophages. Its expression increased rapidly in the first hours after TLR4 activation, followed by a gradual decrease, which was coincident with an elevation of the expression of the other NOTCH receptors. All NOTCH1, 2 and 3 contribute to the increased NOTCH signaling detected in activated macrophages. We also observed a crosstalk between NOTCH3 and NOTCH1 during macrophage activation. Finally, our results highlight the relevance of NOTCH3 in the activation of NF-κB, increasing p65 phosphorylation by p38 MAP kinase. Our data identify, for the first time, NOTCH3 as a relevant player in the control of inflammation.


Assuntos
Inflamação/imunologia , Macrófagos/imunologia , Receptor Notch3/fisiologia , Animais , Regulação da Expressão Gênica , Humanos , Ativação de Macrófagos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/imunologia , NF-kappa B/imunologia , Células RAW 264.7 , Transdução de Sinais , Receptores Toll-Like/imunologia
5.
J Immunol ; 197(8): 3371-3381, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27574297

RESUMO

The involvement of NOTCH signaling in macrophage activation by Toll receptors has been clearly established, but the factors and pathways controlling NOTCH signaling during this process have not been completely delineated yet. We have characterized the role of TSPAN33, a tetraspanin implicated in a disintegrin and metalloproteinase (ADAM) 10 maturation, during macrophage proinflammatory activation. Tspan33 expression increases in response to TLR signaling, including responses triggered by TLR4, TLR3, and TLR2 activation, and it is enhanced by IFN-γ. In this study, we report that induction of Tspan33 expression by TLR and IFN-γ is largely dependent on NOTCH signaling, as its expression is clearly diminished in macrophages lacking Notch1 and Notch2 expression, but it is enhanced after overexpression of a constitutively active intracellular domain of NOTCH1. TSPAN33 is the member of the TspanC8 tetraspanin subgroup more intensely induced during macrophage activation, and its overexpression increases ADAM10, but not ADAM17, maturation. TSPAN33 favors NOTCH processing at the membrane by modulating ADAM10 and/or Presenilin1 activity, thus increasing NOTCH signaling in activated macrophages. Moreover, TSPAN33 modulates TLR-induced proinflammatory gene expression, at least in part, by increasing NF-κB-dependent transcriptional activity. Our results suggest that TSPAN33 represents a new control element in the development of inflammation by macrophages that could constitute a potential therapeutic target.


Assuntos
Ativação de Macrófagos , Macrófagos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Tetraspaninas/metabolismo , Receptores Toll-Like/metabolismo , Animais , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células RAW 264.7 , Tetraspaninas/genética , Células U937
6.
J Biol Chem ; 286(22): 19247-58, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21464136

RESUMO

Macrophages activated through Toll receptor triggering increase the expression of the A(2A) and A(2B) adenosine receptors. In this study, we show that adenosine receptor activation enhances LPS-induced pfkfb3 expression, resulting in an increase of the key glycolytic allosteric regulator fructose 2,6-bisphosphate and the glycolytic flux. Using shRNA and differential expression of A(2A) and A(2B) receptors, we demonstrate that the A(2A) receptor mediates, in part, the induction of pfkfb3 by LPS, whereas the A(2B) receptor, with lower adenosine affinity, cooperates when high adenosine levels are present. pfkfb3 promoter sequence deletion analysis, site-directed mutagenesis, and inhibition by shRNAs demonstrated that HIF1α is a key transcription factor driving pfkfb3 expression following macrophage activation by LPS, whereas synergic induction of pfkfb3 expression observed with the A(2) receptor agonists seems to depend on Sp1 activity. Furthermore, levels of phospho-AMP kinase also increase, arguing for increased PFKFB3 activity by phosphorylation in long term LPS-activated macrophages. Taken together, our results show that, in macrophages, endogenously generated adenosine cooperates with bacterial components to increase PFKFB3 isozyme activity, resulting in greater fructose 2,6-bisphosphate accumulation. This process enhances the glycolytic flux and favors ATP generation helping to develop and maintain the long term defensive and reparative functions of the macrophages.


Assuntos
Adenosina/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Macrófagos Peritoneais/enzimologia , Fosfofrutoquinase-2/biossíntese , Receptor 4 Toll-Like/agonistas , Adenosina/genética , Trifosfato de Adenosina/biossíntese , Trifosfato de Adenosina/genética , Sequência de Aminoácidos , Animais , Linhagem Celular , Frutosedifosfatos/genética , Frutosedifosfatos/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Glicólise/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/biossíntese , Isoenzimas/genética , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/fisiologia , Macrófagos Peritoneais/citologia , Camundongos , Camundongos Knockout , Mutagênese Sítio-Dirigida , Fosfofrutoquinase-2/genética , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina , Deleção de Sequência , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
J Immunol ; 176(9): 5362-73, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16622004

RESUMO

Notch signaling has been extensively implicated in cell-fate determination along the development of the immune system. However, a role for Notch signaling in fully differentiated immune cells has not been clearly defined. We have analyzed the expression of Notch protein family members during macrophage activation. Resting macrophages express Notch-1, -2, and -4, as well as the Notch ligands Jagged-1 and -2. After treatment with LPS and/or IFN-gamma, we observed a p38 MAPK-dependent increase in Notch-1 and Jagged-1 mRNA and protein levels. To study the role of Notch signaling in macrophage activation, we forced the transient expression of truncated, active intracellular Notch-1 (Notch-IC) proteins in Raw 264.7 cells and analyzed their effects on the activity of transcription factors involved in macrophage activation. Notch-IC increased STAT-1-dependent transcription. Furthermore, Raw 264.7 Notch-IC stable transfectants increased STAT1-dependent transcription in response to IFN-gamma, leading to higher expression of IFN regulatory factor-1, suppressor of cytokine signaling-1, ICAM-1, and MHC class II proteins. This effect was independent from an increase of STAT1 Tyr or Ser phosphorylation. However, inducible NO synthase expression and NO production decreased under the same conditions. Our results show that Notch up-regulation and subsequent signaling following macrophage activation modulate gene expression patterns known to affect the function of mature macrophages.


Assuntos
Apresentação de Antígeno/imunologia , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter/genética , Inflamação/imunologia , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Interferon gama/biossíntese , Proteína Jagged-1 , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , RNA Mensageiro/genética , Receptor Notch1/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Proteínas Serrate-Jagged , Fator de Transcrição AP-1/metabolismo , Regulação para Cima/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA