Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 12(2): e2201891, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308047

RESUMO

3D bioprinting is usually implemented on flat surfaces, posing serious limitations in the fabrication of multilayered curved constructs. 4D bioprinting, combining 3D bioprinting with time-dependent stimuli-induced transformation, enables the fabrication of shape-changing constructs. Here, a 4D biofabrication method is reported for cartilage engineering based on the differential swelling of a smart multi-material system made from two hydrogel-based materials: hyaluronan and alginate. Two ink formulations are used: tyramine-functionalized hyaluronan (HAT, high-swelling) and alginate with HAT (AHAT, low-swelling). Both inks have similar elastic, shear-thinning, and printability behavior. The inks are 3D printed into a bilayered scaffold before triggering the shape-change by using liquid immersion as stimulus. In time (4D), the differential swelling between the two zones leads to the scaffold's self-bending. Different designs are made to tune the radius of curvature and shape. A bioprinted formulation of AHAT and human bone marrow cells demonstrates high cell viability. After 28 days in chondrogenic medium, the curvature is clearly present while cartilage-like matrix production is visible on histology. A proof-of-concept of the recently emerged technology of 4D bioprinting with a specific application for the design of curved structures potentially mimicking the curvature and multilayer cellular nature of native cartilage is demonstrated.


Assuntos
Bioimpressão , Células-Tronco Mesenquimais , Humanos , Engenharia Tecidual , Alicerces Teciduais/química , Ácido Hialurônico , Cartilagem , Hidrogéis , Alginatos/química , Impressão Tridimensional
2.
Biochem Biophys Res Commun ; 528(2): 285-291, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32473752

RESUMO

Tissue-specific extracellular matrix (ECM) proteins can play a key role in regulating the fate of stem cells and can potentially be utilized for therapeutic applications. Realising this potential requires further characterization of the diversity of biomolecules present in tissue-specific ECMs and an evaluation of their role as regulatory cues for regenerative medicine applications. The goal of this study was to identify specific soluble factors within the ECM of articular cartilage (AC) and growth plate (GP) that may impart chondro-inductivity or osteo-inductivity respectively. To this end, the significantly different proteins between both matrisomes were searched against the STRING database platform, from which C-type lectin domain family-11 member-A (CLEC11A) and S100 calcium-binding protein-A10 (S100A10) were identified as potential candidates for supporting osteogenesis, and Gremlin-1 (GREM1) and TGF-ß induced gene human clone-3 (ßIGH3) were identified as potential candidates for supporting stable chondrogenesis. Stimulation of chondrogenically-primed bone marrow-derived stem cells (BMSCs) with the AC-specific proteins GREM1 and ßIGH3 had no noticeable effect on the deposition of collagen-II, a marker of chondrogenesis, but appeared to suppress the production of the hypertrophic marker collagen-X, particularly for higher concentrations of GREM1. Stimulation with GREM1 was also found to suppress the direct osteoblastic differentiation of BMSCs. In contrast, stimulation with the GP-specific factors CLEC11A and S100A10 was found to enhance osteogenesis of BMSCs, increasing the levels of mineralization, particularly for higher concentration of CLEC11A. Together these results demonstrate that AC- and GP-specific proteins may play a key role in developing novel strategies for engineering phenotypically stable articular cartilage or enhancing the regeneration of critically-sized bone defects.


Assuntos
Cartilagem Articular/metabolismo , Condrogênese , Proteínas da Matriz Extracelular/metabolismo , Lâmina de Crescimento/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osteogênese , Animais , Hipertrofia , Células-Tronco Mesenquimais/patologia , Suínos
3.
J Biomed Mater Res A ; 107(10): 2222-2234, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31116910

RESUMO

Extracellular matrix (ECM)-derived implants hold great promise for tissue repair, but new strategies are required to produce efficiently decellularized scaffolds with the necessary porosity and mechanical properties to facilitate regeneration. In this study, we demonstrate that it is possible to produce highly porous, elastic, articular cartilage (AC) ECM-derived scaffolds that are efficiently decellularized, nonimmunogenic, and chondro-permissive. Pepsin solubilized porcine AC was cross-linked with glyoxal, lyophilized and then subjected to dehydrothermal treatment. The resulting scaffolds were predominantly collagenous in nature, with the majority of sulphated glycosaminoglycan (sGAG) and DNA removed during scaffold fabrication. Four scaffold variants were produced to examine the effect of both ECM (10 or 20 mg/mL) and glyoxal (5 or 10 mM) concentration on the mechanical and biological properties of the resulting construct. When seeded with human infrapatellar fat pad-derived stromal cells, the scaffolds with the lowest concentration of both ECM and glyoxal were found to promote the development of a more hyaline-like cartilage tissue, as evident by increased sGAG and type II collagen deposition. Furthermore, when cultured in the presence of human macrophages, it was found that these ECM-derived scaffolds did not induce the production of key proinflammatory cytokines, which is critical to success of an implantable biomaterial. Together these findings demonstrate that the novel combination of solubilized AC ECM and glyoxal crosslinking can be used to produce highly porous scaffolds that are sufficiently decellularized, highly elastic, chondro-permissive and do not illicit a detrimental immune response when cultured in the presence of human macrophages.


Assuntos
Condrócitos/citologia , Reagentes de Ligações Cruzadas/química , Elasticidade , Matriz Extracelular/metabolismo , Glioxal/farmacologia , Ortopedia , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Cartilagem Articular/citologia , Condrócitos/efeitos dos fármacos , Condrogênese , Citocinas/biossíntese , Matriz Extracelular/efeitos dos fármacos , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Porosidade , Solubilidade , Suínos
4.
Biomaterials ; 188: 63-73, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30321864

RESUMO

Biological scaffolds generated from tissue-derived extracellular matrix (ECM) are commonly used clinically for soft tissue regeneration. Such biomaterials can enhance tissue-specific differentiation of adult stem cells, suggesting that structuring different ECMs into multi-layered scaffolds can form the basis of new strategies for regenerating damaged interfacial tissues such as the osteochondral unit. In this study, mass spectrometry is used to demonstrate that growth plate (GP) and articular cartilage (AC) ECMs contain a unique array of regulatory proteins that may be particularly suited to bone and cartilage repair respectively. Applying a novel iterative freeze-drying method, porous bi-phasic scaffolds composed of GP ECM overlaid by AC ECM are fabricated, which are capable of spatially directing stem cell differentiation in vitro, promoting the development of graded tissues transitioning from calcified cartilage to hyaline-like cartilage. Evaluating repair 12-months post-implantation into critically-sized caprine osteochondral defects reveals that these scaffolds promote regeneration in a manner distinct to commercial control-scaffolds. The GP layer supports endochondral bone formation, while the AC layer stimulates the formation of an overlying layer of hyaline cartilage with a collagen fiber architecture better recapitulating the native tissue. These findings support the use of a bi-layered, tissue-specific ECM derived scaffolds for regenerating spatially complex musculoskeletal tissues.


Assuntos
Condrogênese , Matriz Extracelular/química , Células-Tronco Mesenquimais/citologia , Osteogênese , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/química , Cartilagem Articular/química , Diferenciação Celular , Células Cultivadas , Cabras , Lâmina de Crescimento/química , Regeneração , Suínos , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA