Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 243(1): 162-179, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706429

RESUMO

Some cyanobacteria can grow photoautotrophically or photomixotrophically by using simultaneously CO2 and glucose. The switch between these trophic modes and the role of glycogen, their main carbon storage macromolecule, was investigated. We analysed the effect of glucose addition on the physiology, metabolic and photosynthetic state of Synechocystis sp. PCC 6803 and mutants lacking phosphoglucomutase and ADP-glucose pyrophosphorylase, with limitations in glycogen synthesis. Glycogen acted as a metabolic buffer: glucose addition increased growth and glycogen reserves in the wild-type (WT), but arrested growth in the glycogen synthesis mutants. Already 30 min after glucose addition, metabolites from the Calvin-Benson-Bassham cycle and the oxidative pentose phosphate shunt increased threefold more in the glycogen synthesis mutants than the WT. These alterations substantially affected the photosynthetic performance of the glycogen synthesis mutants, as O2 evolution and CO2 uptake were both impaired. We conclude that glycogen synthesis is essential during transitions to photomixotrophy to avoid metabolic imbalance that induces inhibition of electron transfer from PSII and subsequently accumulation of reactive oxygen species, loss of PSII core proteins, and cell death. Our study lays foundations for optimising photomixotrophy-based biotechnologies through understanding the coordination of the crosstalk between photosynthetic electron transport and metabolism.


Assuntos
Glicogênio , Fotossíntese , Complexo de Proteína do Fotossistema II , Synechocystis , Synechocystis/metabolismo , Synechocystis/efeitos dos fármacos , Synechocystis/crescimento & desenvolvimento , Synechocystis/genética , Glicogênio/metabolismo , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Mutação/genética , Glucose/metabolismo , Dióxido de Carbono/metabolismo , Oxigênio/metabolismo , Glucose-1-Fosfato Adenililtransferase/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Fosfoglucomutase/metabolismo , Fosfoglucomutase/genética
2.
J Exp Bot ; 71(6): 2005-2017, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-31858138

RESUMO

Cyanobacteria are widely distributed photosynthetic organisms. During the day they store carbon, mainly as glycogen, to provide the energy and carbon source they require for maintenance during the night. Here, we generate a mutant strain of the freshwater cyanobacterium Synechocystis sp. PCC 6803 lacking both glycogen synthases. This mutant has a lethal phenotype due to massive accumulation of ADP-glucose, the substrate of glycogen synthases. This accumulation leads to alterations in its photosynthetic capacity and a dramatic decrease in the adenylate energy charge of the cell to values as low as 0.1. Lack of ADP-glucose pyrophosphorylase, the enzyme responsible for ADP-glucose synthesis, or reintroduction of any of the glycogen synthases abolishes the lethal phenotype. Viability of the glycogen synthase mutant is also fully recovered in NaCl-supplemented medium, which redirects the surplus of ADP-glucose to synthesize the osmolite glucosylglycerol. This alternative metabolic sink also suppresses phenotypes associated with the defective response to nitrogen deprivation characteristic of glycogen-less mutants, restoring the capacity to degrade phycobiliproteins. Thus, our system is an excellent example of how inadequate management of the adenine nucleotide pools results in a lethal phenotype, and the influence of metabolic carbon flux in cell viability and fitness.


Assuntos
Adenosina Difosfato Glucose , Synechocystis , Carbono , Ciclo do Carbono , Glucose , Cloreto de Sódio , Synechocystis/genética
3.
Mol Plant ; 7(1): 87-100, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24121290

RESUMO

Glycogen constitutes the major carbon storage source in cyanobacteria, as starch in algae and higher plants. Glycogen and starch synthesis is linked to active photosynthesis and both of them are degraded to glucose in the dark to maintain cell metabolism. Control of glycogen biosynthesis in cyanobacteria could be mediated by the regulation of the enzymes involved in this process, ADP-glucose pyrophosphorylase (AGP) and glycogen synthase, which were identified as putative thioredoxin targets. We have analyzed whether both enzymes were subjected to redox modification using purified recombinant enzymes or cell extracts in the model cyanobacterium Synechocystis sp. PCC 6803. Our results indicate that both AGP and glycogen synthases are sensitive to copper oxidation. However, only AGP exhibits a decrease in its enzymatic activity, which is recovered after reduction by DTT or reduced thioredoxin (TrxA), suggesting a redox control of AGP. In order to elucidate the role in redox control of the cysteine residues present on the AGP sequence (C45, C185, C320, and C337), they were replaced with serine. All AGP mutant proteins remained active when expressed in Synechocystis, although they showed different electrophoretic mobility profiles after copper oxidation, reflecting a complex pattern of cysteines interaction.


Assuntos
Glucose-1-Fosfato Adenililtransferase/metabolismo , Glicogênio Sintase/metabolismo , Glicogênio/biossíntese , Synechocystis/metabolismo , Cisteína/metabolismo , Glucose-1-Fosfato Adenililtransferase/química , Oxirredução , Synechocystis/enzimologia , Tiorredoxinas/metabolismo
4.
Regul Pept ; 125(1-3): 41-6, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15582712

RESUMO

Pancreastatin (PST), a chromogranin A-derived peptide, has an anti-insulin metabolic effect and inhibits growth and proliferation by producing nitric oxide (NO) in HTC rat hepatoma cells. When NO production is blocked, a proliferative effect prevails due to the activation a Galphaq/11-phospholipase C-beta (PLC-beta) pathway, which leads to an increase in [Ca2+]i, protein kinase C (PKC) and mitogen-activated protein kinase (MAPK) activation. The aim of the present study was to investigate the NO synthase (NOS) isoform that mediates these effects of PST on HTC hepatoma cells and the possible roles of cyclic GMP (cGMP) and cGMP-dependent protein kinase. DNA and protein synthesis in response to PST were measured as [3H]-thymidine and [3H]-leucine incorporation in the presence of various pharmacological inhibitors: N-monomethyl-L-arginine (NMLA, nonspecific NOS inhibitor), L-NIO (endothelial nitric oxide synthase (eNOS) inhibitor), espermidine (neuronal nitric oxide synthase (nNOS) inhibitor), LY83583 (guanylyl cyclase inhibitor), and KT5823 (protein kinase G inhibitor, (PKG)). L-NIO, similarly to NMLA, reverted the inhibitory effect of PST on hepatoma cell into a stimulatory effect on growth and proliferation. Nevertheless, espermidine also prevented the inhibitory effect of PST, but there was no stimulation of growth and proliferation. When guanylyl cyclase activity was blocked, there was again a reversion of the inhibitory effect into a stimulatory action, suggesting that the effect of NO was mediated by the production of cGMP. PKG inhibition prevented the inhibitory effect of PST, but there was no stimulatory effect. Therefore, the inhibitory effect of PST on growth and proliferation of hepatoma cells may be mainly mediated by eNOS activation. In turn, the effect of NO may be mediated by cGMP, whereas other pathways in addition to PKG activation seem to mediate the inhibition of DNA and protein synthesis by PST in HTC hepatoma cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Cromograninas/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Fígado/citologia , Proteínas do Tecido Nervoso/fisiologia , Óxido Nítrico Sintase/fisiologia , Ornitina/análogos & derivados , Hormônios Pancreáticos/metabolismo , Hormônios Pancreáticos/fisiologia , Aminoquinolinas/farmacologia , Animais , Arginina/química , Cálcio/metabolismo , Carbazóis/farmacologia , Crescimento Celular , Proliferação de Células , Cromogranina A , Proteínas Quinases Dependentes de GMP Cíclico/farmacologia , DNA/química , DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Guanilato Ciclase/metabolismo , Indóis/farmacologia , Isoenzimas/metabolismo , Leucina/química , Sistema de Sinalização das MAP Quinases , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I , Óxido Nítrico Sintase Tipo III , Ornitina/farmacologia , Peptídeos/química , Fosfolipase C beta , Isoformas de Proteínas , Ratos , Receptores do Fator Natriurético Atrial/metabolismo , Espermidina/farmacologia , Timidina/química , Fatores de Tempo , Fosfolipases Tipo C/metabolismo , ômega-N-Metilarginina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA