Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Horm Metab Res ; 49(5): 343-349, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28351093

RESUMO

Angiopoietin-like protein 8 (ANGPTL8)/betatrophin expression in visceral adipose tissue and associations with circulating fatty acid profile have not yet been investigated.Forty subjects were included in a cross-sectional study, 57 in a dietary weight reduction intervention. Circulating Angiopoietin-like protein 8/betatrophin was measured in all subjects. Liver and adipose tissue were sampled and plasma fatty acids and tissue Angiopoietin-like protein 8/betatrophin expression were evaluated in the cross-sectional study. In the intervention study oral glucose testing and liver magnetic resonance scanning at baseline and after 6 months were performed. Angiopoietin-like protein 8/betatrophin mRNA was increased in visceral compared to subcutaneous adipose tissue (p<0.001). Circulating ANGPTL8/betatrophin correlated with liver steatosis (r=0.42, p=0.047), triacylglycerols (r=0.34, p=0.046), saturated (r=0.43, p=0.022), monounsaturated (r=0.51, p=0.007), and polyunsaturated fatty acids (r=-0.53, p=0.004). In the intervention study, baseline Angiopoietin-like protein 8/betatrophin correlated with age (r=0.32, p=0.010) and triacylglycerols (r=0.30, p=0.02) and was increased with hepatic steatosis (p=0.033). Weight loss reduced liver fat by 45% and circulating Angiopoietin-like protein 8/betatrophin by 11% (288±17 vs. 258±17 pg/ml; p=0.015). Angiopoietin-like protein 8/betatrophin is related to liver steatosis, while visceral adipose tissue represents an additional site of expression in humans.


Assuntos
Proteínas Semelhantes a Angiopoietina/genética , Fígado Gorduroso/genética , Gordura Intra-Abdominal/metabolismo , Hormônios Peptídicos/genética , Proteína 8 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina/metabolismo , Estudos de Coortes , Dieta , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Hormônios Peptídicos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Cell Cycle ; 14(14): 2293-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945652

RESUMO

Diabetes mellitus type 2 (T2DM), insulin therapy, and hyperinsulinemia are independent risk factors of liver cancer. Recently, the use of a novel inhibitor of insulin degrading enzyme (IDE) was proposed as a new therapeutic strategy in T2DM. However, IDE inhibition might stimulate liver cell proliferation via increased intracellular insulin concentration. The aim of this study was to characterize effects of inhibition of IDE activity in HepG2 hepatoma cells and to analyze liver specific expression of IDE in subjects with T2DM. HepG2 cells were treated with 10 nM insulin for 24 h with or without inhibition of IDE activity using IDE RNAi, and cell transcriptome and proliferation rate were analyzed. Human liver samples (n = 22) were used for the gene expression profiling by microarrays. In HepG2 cells, IDE knockdown changed expression of genes involved in cell cycle and apoptosis pathways. Proliferation rate was lower in IDE knockdown cells than in controls. Microarray analysis revealed the decrease of hepatic IDE expression in subjects with T2DM accompanied by the downregulation of the p53-dependent genes FAS and CCNG2, but not by the upregulation of proliferation markers MKI67, MCM2 and PCNA. Similar results were found in the liver microarray dataset from GEO Profiles database. In conclusion, IDE expression is decreased in liver of subjects with T2DM which is accompanied by the dysregulation of p53 pathway. Prolonged use of IDE inhibitors for T2DM treatment should be carefully tested in animal studies regarding its potential effect on hepatic tumorigenesis.


Assuntos
Proliferação de Células/efeitos dos fármacos , Insulina/farmacologia , Insulisina/metabolismo , Fígado/metabolismo , Adulto , Idoso , Apoptose/efeitos dos fármacos , Estudos de Coortes , Ciclina G2/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Feminino , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Insulisina/antagonistas & inibidores , Insulisina/genética , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Interferência de RNA , Transcriptoma/efeitos dos fármacos , Receptor fas/metabolismo
3.
Diabetes ; 64(3): 856-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25281430

RESUMO

WISP1 (Wnt1-inducible signaling pathway protein-1, also known as CCN4) is a member of the secreted extracellular matrix-associated proteins of the CCN family and a target gene of the Wingless-type (WNT) signaling pathway. Growing evidence links the WNT signaling pathway to the regulation of adipogenesis and low-grade inflammation in obesity. We aimed to validate WISP1 as a novel adipokine. Human adipocyte differentiation was associated with increased WISP1 expression and secretion. Stimulation of human macrophages with WISP1 led to a proinflammatory response. Circulating WISP1 and WISP1 subcutaneous adipose tissue expression were regulated by weight changes in humans and mice. WISP1 expression in visceral and subcutaneous fat tissue was associated with markers of insulin resistance and inflammation in glucose-tolerant subjects. In patients with nonalcoholic fatty liver disease, we found no correlation among disease activity score, liver fat content, and WISP1 expression. Insulin regulated WISP1 expression in adipocytes in vitro but had no acute effect on WISP1 gene expression in subcutaneous fat tissue in overweight subjects who had undergone hyperinsulinemic clamp experiments. The data suggest that WISP1 may play a role in linking obesity to inflammation and insulin resistance and could be a novel therapeutic target for obesity.


Assuntos
Adipocinas/metabolismo , Proteínas de Sinalização Intercelular CCN/metabolismo , Inflamação/metabolismo , Obesidade/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Tecido Adiposo/metabolismo , Animais , Western Blotting , Proteínas de Sinalização Intercelular CCN/genética , Células Cultivadas , Humanos , Gordura Intra-Abdominal/metabolismo , Macrófagos/metabolismo , Imageamento por Ressonância Magnética , Masculino , Células-Tronco Mesenquimais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase em Tempo Real , Gordura Subcutânea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA