Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36616308

RESUMO

In this study, growth and ionomic responses of three duckweed species were analyzed, namely Lemna minor, Landoltia punctata, and Spirodela polyrhiza, were exposed for short-term periods to hexavalent chromium or nickel under laboratory conditions. It was found that different duckweed species had distinct ionomic patterns that can change considerably due to metal treatments. The results also show that, because of the stress-induced increase in leaf mass-to-area ratio, the studied species showed different order of metal uptake efficiency if plant area was used as unit of reference instead of the traditional dry weight-based approach. Furthermore, this study revealed that µXRF is applicable in mapping elemental distributions in duckweed fronds. By using this method, we found that within-frond and within-colony compartmentation of metallic ions were strongly metal- and in part species-specific. Analysis of duckweed ionomics is a valuable approach in exploring factors that affect bioaccumulation of trace pollutants by these plants. Apart from remediating industrial effluents, this aspect will gain relevance in food and feed safety when duckweed biomass is produced for nutritional purposes.

2.
Electrophoresis ; 39(22): 2851-2853, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30101988

RESUMO

By reading the commentary of Bevelacqua and Mortazavi regarding our recently published paper titled as "The effect of simulated space radiation on the N-glycosylation of human immunoglobulin G1"[1], we are afraid that some of the important messaging aspects of our paper might not have been articulated adequately to be fully understandable for a wider audience, i.e., not separation scientists. First, we should clarify that complete space radiation description was not the goal of this paper. In this short communication we only intended to show the effect of simulated space radiation on the conserved N-glycosylation of IgG1 molecules with the goal to understand if they could be utilized as disease biomarkers during longer space missions, similar to that as they are currently used here on Earth, e.g. for autoimmune disease or aging markers. Therefore, no discussion was given about any biological effects either as our study only investigated the qualitative effects of proton irradiation on the N-linked carbohydrate decomposition of IgG type 1 molecules with the intent of suggesting them to be used as biomarkers during deep space travel. Radioadaptation was never an issue in our study for the reasons mentioned above.


Assuntos
Carboidratos , Imunoglobulina G , Biomarcadores , Eletroforese , Glicosilação , Humanos
3.
Electrophoresis ; 39(22): 2872-2876, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29775210

RESUMO

On a roundtrip to Mars, astronauts are expectedly exposed to an approximate amount of radiation that exceeds the lifetime limits on Earth. This elevated radiation dose is mainly due to Galactic Cosmic Rays and Solar Particle Events. Specific patterns of the N-glycosylation of human Igs have already been associated with various ailments such as autoimmune diseases, malignant transformation, chronic inflammation, and ageing. The focus of our work was to investigate the effect of low-energy proton irradiation on the IgG N-glycosylation profile with the goal if disease associated changes could be detected during space travel and not altered by space radiation. Two ionization sources were used during the experiments, a Van de Graaff generator for the irradiation of solidified hIgG samples in vacuum, and a Tandetron accelerator to irradiate hIgG samples in aqueous solution form. Structural carbohydrate analysis was accomplished by CE with laser induced fluorescent detection to determine the effects of simulated space radiation on N-glycosylation of hIgG1 samples. Our results revealed that even several thousand times higher radiation doses that of astronauts can suffer during long duration missions beyond the shielding environment of Low Earth Orbit, no changes were observed in hIgG1 N-glycosylation. Consequently, changes in N-linked carbohydrate profile of IgG1 can be used as molecular diagnostic tools in space.


Assuntos
Radiação Cósmica/efeitos adversos , Glicosilação/efeitos da radiação , Imunoglobulina G , Voo Espacial , Astronautas , Eletroforese Capilar , Humanos , Imunoglobulina G/análise , Imunoglobulina G/química , Imunoglobulina G/efeitos da radiação , Modelos Teóricos
4.
Electrophoresis ; 37(17-18): 2292-6, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26572920

RESUMO

In this study, N-linked glycans from intact, formalin treated and formalin fixed paraffin embedded (FFPE) standard glycoproteins, human serum and mouse tumor tissue samples were investigated in respect to their susceptibility for formaldehyde treatment mediated changes. FFPE samples were first deparaffinized, followed by solubilization in radioimmunoprecipitation assay buffer and treated with PNGase F for N-glycan release. The released glycans were labeled with a charged fluorophore and analyzed by capillary electrophoresis with laser induced fluorescent detection. No significant alterations were found in the N-glycome profile at any of the investigated complexation levels (i.e., glycoprotein, serum and tissue samples) of the study. These results suggest that FFPE samples can be readily used for global N-glycome analysis holding the promise to find novel carbohydrate biomarkers in prospective and retrospective studies. Exoglycosidase based carbohydrate sequencing was also applied to reveal some basic structural information about the N-linked carbohydrates of the mouse tumor tissue samples.


Assuntos
Eletroforese Capilar/métodos , Formaldeído , Inclusão em Parafina , Fixação de Tecidos , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA