Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464085

RESUMO

Chimeric antigen receptor (CAR)-engineered T and NK cells can cause durable remission of B-cell malignancies; however, limited persistence restrains the full potential of these therapies in many patients. The FAS ligand (FAS-L)/FAS pathway governs naturally-occurring lymphocyte homeostasis, yet knowledge of which cells express FAS-L in patients and whether these sources compromise CAR persistence remains incomplete. Here, we constructed a single-cell atlas of diverse cancer types to identify cellular subsets expressing FASLG, the gene encoding FAS-L. We discovered that FASLG is limited primarily to endogenous T cells, NK cells, and CAR-T cells while tumor and stromal cells express minimal FASLG. To establish whether CAR-T/NK cell survival is regulated through FAS-L, we performed competitive fitness assays using lymphocytes modified with or without a FAS dominant negative receptor (ΔFAS). Following adoptive transfer, ΔFAS-expressing CAR-T and CAR-NK cells became enriched across multiple tissues, a phenomenon that mechanistically was reverted through FASLG knockout. By contrast, FASLG was dispensable for CAR-mediated tumor killing. In multiple models, ΔFAS co-expression by CAR-T and CAR-NK enhanced antitumor efficacy compared with CAR cells alone. Together, these findings reveal that CAR-engineered lymphocyte persistence is governed by a FAS-L/FAS auto-regulatory circuit.

2.
Dev Cell ; 58(24): 2959-2973.e7, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38056453

RESUMO

Inflammation is essential to the disruption of tissue homeostasis and can destabilize the identity of lineage-committed epithelial cells. Here, we employ lineage-traced mouse models, single-cell transcriptomic and chromatin analyses, and CUT&TAG to identify an epigenetic memory of inflammatory injury in the pancreatic acinar cell compartment. Despite resolution of pancreatitis, our data show that acinar cells fail to return to their molecular baseline, with retention of elevated chromatin accessibility and H3K4me1 at metaplasia genes, such that memory represents an incomplete cell fate decision. In vivo, we find this epigenetic memory controls lineage plasticity, with diminished metaplasia in response to a second insult but increased tumorigenesis with an oncogenic Kras mutation. The lowered threshold for oncogenic transformation, in turn, can be restored by blockade of MAPK signaling. Together, we define the chromatin dynamics, molecular encoding, and recall of a prolonged epigenetic memory of inflammatory injury that impacts future responses but remains reversible.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Memória Epigenética , Transformação Celular Neoplásica/patologia , Células Acinares/patologia , Pâncreas/patologia , Cromatina/genética , Metaplasia/patologia , Carcinoma Ductal Pancreático/genética
3.
Nat Immunol ; 24(9): 1527-1539, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37537361

RESUMO

Tumor-specific CD8+ T cells (TST) in patients with cancer are dysfunctional and unable to halt cancer progression. TST dysfunction, also known as exhaustion, is thought to be driven by chronic T cell antigen receptor (TCR) stimulation over days to weeks. However, we know little about the interplay between CD8+ T cell function, cell division and epigenetic remodeling within hours of activation. Here, we assessed early CD8+ T cell differentiation, cell division, chromatin accessibility and transcription in tumor-bearing mice and acutely infected mice. Surprisingly, despite robust activation and proliferation, TST had near complete effector function impairment even before undergoing cell division and had acquired hallmark chromatin accessibility features previously associated with later dysfunction/exhaustion. Moreover, continued tumor/antigen exposure drove progressive epigenetic remodeling, 'imprinting' the dysfunctional state. Our study reveals the rapid divergence of T cell fate choice before cell division in the context of tumors versus infection.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Divisão Celular , Antígenos de Neoplasias , Cromatina , Receptores de Antígenos de Linfócitos T
4.
JCI Insight ; 8(18)2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37581929

RESUMO

IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B-releasing T cell responses in PBMCs from antiretroviral therapy-suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.


Assuntos
Antineoplásicos , Infecções por HIV , Humanos , Fator de Transcrição STAT5/metabolismo , Interleucina-15/farmacologia , Interleucina-15/metabolismo , Latência Viral , Linfócitos T Citotóxicos , Antineoplásicos/uso terapêutico
5.
J Crohns Colitis ; 17(5): 795-803, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36322790

RESUMO

BACKGROUND: Most Crohn's disease [CD] patients require surgery. Ileitis recurs after most ileocolectomies and is a critical determinant for outcomes. The impacts of ileocolectomy-induced bile acid [BA] perturbations on intestinal microbiota and inflammation are unknown. We characterized the relationships between ileocolectomy, stool BAs, microbiota and intestinal inflammation in inflammatory bowel disease [IBD]. METHODS: Validated IBD clinical and endoscopic assessments were prospectively collected. Stool primary and secondary BA concentrations were compared based on ileocolectomy and ileitis status. Primary BA thresholds for ileitis were evaluated. Metagenomic sequencing was use to profile microbial composition and function. Relationships between ileocolectomy, BAs and microbiota were assessed. RESULTS: In 166 patients, elevated primary and secondary BAs existed with ileocolectomy. With ileitis, only primary BAs [795 vs 398 nmol/g, p = 0.009] were higher compared to without ileitis. The optimal primary BA threshold [≥228 nmol/g] identified ileitis on multivariable analysis [odds ratio = 2.3, p = 0.04]. Microbial diversity, Faecalibacterium prausnitzii and O-acetylhomoserine aminocarboxypropyltransferase [MetY] were decreased with elevated primary BAs. Amongst ileocolectomy patients, only those with elevated primary BAs had diversity, F. prausnitzii and MetY reductions. Those with both ileocolectomy and intermediate [p = 0.002] or high [≥228 nmol/g, p = 9.1e-11]] primary BA concentrations had reduced F. prausnitzii compared to without ileocolectomy. Those with ileocolectomy and low [<29.2 nmol/g] primary BA concentrations had similar F. prausnitzii to those without ileocolectomy [p = 0.13]. MetY was reduced with ileitis [p = 0.02]. CONCLUSIONS: Elevated primary BAs were associated with ileitis, and reduced microbial diversity, F. prausnitzii abundance and enzymatic abundance of MetY [acetate and l-methionine-producing enzyme expressed by F. prausnitzii], and were the only factors associated with these findings after ileocolectomy.


Assuntos
Microbioma Gastrointestinal , Ileíte , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/cirurgia , Doenças Inflamatórias Intestinais/microbiologia , Inflamação , Ileíte/cirurgia , Ileíte/microbiologia , Colectomia , Ácidos e Sais Biliares
6.
Nat Med ; 28(5): 946-957, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35484264

RESUMO

Public neoantigens (NeoAgs) represent an elite class of shared cancer-specific epitopes derived from recurrently mutated driver genes. Here we describe a high-throughput platform combining single-cell transcriptomic and T cell receptor (TCR) sequencing to establish whether mutant PIK3CA, among the most frequently genomically altered driver oncogenes, generates an immunogenic public NeoAg. Using this strategy, we developed a panel of TCRs that recognize an endogenously processed neopeptide encompassing a common PIK3CA hotspot mutation restricted by the prevalent human leukocyte antigen (HLA)-A*03:01 allele. Mechanistically, immunogenicity to this public NeoAg arises from enhanced neopeptide/HLA complex stability caused by a preferred HLA anchor substitution. Structural studies indicated that the HLA-bound neopeptide presents a comparatively 'featureless' surface dominated by the peptide's backbone. To bind this epitope with high specificity and affinity, we discovered that a lead TCR clinical candidate engages the neopeptide through an extended interface facilitated by an unusually long CDR3ß loop. In patients with diverse malignancies, we observed NeoAg clonal conservation and spontaneous immunogenicity to the neoepitope. Finally, adoptive transfer of TCR-engineered T cells led to tumor regression in vivo in mice bearing PIK3CA-mutant tumors but not wild-type PIK3CA tumors. Together, these findings establish the immunogenicity and therapeutic potential of a mutant PIK3CA-derived public NeoAg.


Assuntos
Antígenos de Neoplasias , Neoplasias , Animais , Antígenos de Neoplasias/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Camundongos , Mutação/genética , Neoplasias/genética , Receptores de Antígenos de Linfócitos T
7.
Nature ; 602(7895): 156-161, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34847567

RESUMO

CD8 T cell-mediated autoimmune diseases result from the breakdown of self-tolerance mechanisms in autoreactive CD8 T cells1. How autoimmune T cell populations arise and are sustained, and the molecular programmes defining the autoimmune T cell state, are unknown. In type 1 diabetes, ß-cell-specific CD8 T cells destroy insulin-producing ß-cells. Here we followed the fate of ß-cell-specific CD8 T cells in non-obese diabetic mice throughout the course of type 1 diabetes. We identified a stem-like autoimmune progenitor population in the pancreatic draining lymph node (pLN), which self-renews and gives rise to pLN autoimmune mediators. pLN autoimmune mediators migrate to the pancreas, where they differentiate further and destroy ß-cells. Whereas transplantation of as few as 20 autoimmune progenitors induced type 1 diabetes, as many as 100,000 pancreatic autoimmune mediators did not. Pancreatic autoimmune mediators are short-lived, and stem-like autoimmune progenitors must continuously seed the pancreas to sustain ß-cell destruction. Single-cell RNA sequencing and clonal analysis revealed that autoimmune CD8 T cells represent unique T cell differentiation states and identified features driving the transition from autoimmune progenitor to autoimmune mediator. Strategies aimed at targeting the stem-like autoimmune progenitor pool could emerge as novel and powerful immunotherapeutic interventions for type 1 diabetes.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Células Secretoras de Insulina/imunologia , Células-Tronco/patologia , Animais , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/transplante , Autorrenovação Celular , Células Clonais/imunologia , Células Clonais/metabolismo , Células Clonais/patologia , Modelos Animais de Doenças , Feminino , Glucose-6-Fosfatase/imunologia , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Células Secretoras de Insulina/patologia , Linfonodos/imunologia , Masculino , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Análise de Célula Única , Transplante de Células-Tronco , Células-Tronco/imunologia , Células-Tronco/metabolismo , Transcriptoma
8.
J Exp Med ; 219(2)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-34935874

RESUMO

T cell receptor (TCR) signal strength is a key determinant of T cell responses. We developed a cancer mouse model in which tumor-specific CD8 T cells (TST cells) encounter tumor antigens with varying TCR signal strength. High-signal-strength interactions caused TST cells to up-regulate inhibitory receptors (IRs), lose effector function, and establish a dysfunction-associated molecular program. TST cells undergoing low-signal-strength interactions also up-regulated IRs, including PD1, but retained a cell-intrinsic functional state. Surprisingly, neither high- nor low-signal-strength interactions led to tumor control in vivo, revealing two distinct mechanisms by which PD1hi TST cells permit tumor escape; high signal strength drives dysfunction, while low signal strength results in functional inertness, where the signal strength is too low to mediate effective cancer cell killing by functional TST cells. CRISPR-Cas9-mediated fine-tuning of signal strength to an intermediate range improved anti-tumor activity in vivo. Our study defines the role of TCR signal strength in TST cell function, with important implications for T cell-based cancer immunotherapies.


Assuntos
Neoplasias/etiologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Evasão Tumoral , Animais , Antígenos de Neoplasias/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Imunoterapia Adotiva/métodos , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Especificidade do Receptor de Antígeno de Linfócitos T
9.
Nature ; 571(7764): 270-274, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31207604

RESUMO

Tumour-specific CD8 T cell dysfunction is a differentiation state that is distinct from the functional effector or memory T cell states1-6. Here we identify the nuclear factor TOX as a crucial regulator of the differentiation of tumour-specific T (TST) cells. We show that TOX is highly expressed in dysfunctional TST cells from tumours and in exhausted T cells during chronic viral infection. Expression of TOX is driven by chronic T cell receptor stimulation and NFAT activation. Ectopic expression of TOX in effector T cells in vitro induced a transcriptional program associated with T cell exhaustion. Conversely, deletion of Tox in TST cells in tumours abrogated the exhaustion program: Tox-deleted TST cells did not upregulate genes for inhibitory receptors (such as Pdcd1, Entpd1, Havcr2, Cd244 and Tigit), the chromatin of which remained largely inaccessible, and retained high expression of transcription factors such as TCF-1. Despite their normal, 'non-exhausted' immunophenotype, Tox-deleted TST cells remained dysfunctional, which suggests that the regulation of expression of inhibitory receptors is uncoupled from the loss of effector function. Notably, although Tox-deleted CD8 T cells differentiated normally to effector and memory states in response to acute infection, Tox-deleted TST cells failed to persist in tumours. We hypothesize that the TOX-induced exhaustion program serves to prevent the overstimulation of T cells and activation-induced cell death in settings of chronic antigen stimulation such as cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Diferenciação Celular/imunologia , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Homeodomínio/metabolismo , Neoplasias/imunologia , Animais , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Grupo de Alta Mobilidade/deficiência , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Homeodomínio/genética , Humanos , Memória Imunológica , Linfócitos do Interstício Tumoral/citologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos , Neoplasias/patologia , Fenótipo , Receptores de Antígenos de Linfócitos T/imunologia , Transcrição Gênica
10.
Elife ; 3: e02024, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24842875

RESUMO

Histone acetyl transferases (HATs) play distinct roles in many cellular processes and are frequently misregulated in cancers. Here, we study the regulatory potential of MYST1-(MOF)-containing MSL and NSL complexes in mouse embryonic stem cells (ESCs) and neuronal progenitors. We find that both complexes influence transcription by targeting promoters and TSS-distal enhancers. In contrast to flies, the MSL complex is not exclusively enriched on the X chromosome, yet it is crucial for mammalian X chromosome regulation as it specifically regulates Tsix, the major repressor of Xist lncRNA. MSL depletion leads to decreased Tsix expression, reduced REX1 recruitment, and consequently, enhanced accumulation of Xist and variable numbers of inactivated X chromosomes during early differentiation. The NSL complex provides additional, Tsix-independent repression of Xist by maintaining pluripotency. MSL and NSL complexes therefore act synergistically by using distinct pathways to ensure a fail-safe mechanism for the repression of X inactivation in ESCs.DOI: http://dx.doi.org/10.7554/eLife.02024.001.


Assuntos
Células-Tronco Embrionárias/citologia , Histona Acetiltransferases/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Diferenciação Celular , Cromatina/metabolismo , Células-Tronco Embrionárias/metabolismo , Camundongos , Ligação Proteica , RNA Longo não Codificante/genética , Inativação do Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA