Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Braz Oral Res ; 38: e056, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39016365

RESUMO

This study evaluated the effect of fluoride varnishes containing micrometric or nanosized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. Bovine root dentin blocks were selected by surface hardness and randomly divided into five experimental groups/varnishes (n = 20/group): placebo, 5% sodium fluoride (NaF); 5% NaF+5% micrometric TMP; 5% NaF+2.5% nanosized TMP; and 5% NaF+5% nanosized TMP. Half of the surface of all blocks received a single application of the assigned varnish, with subsequent immersion in artificial saliva for 6 h. Varnishes were then removed and the blocks were immersed in citric acid (90 s, 4×/day, 5 days). After each erosive cycle, ten blocks of each group were immersed in a placebo dentifrice for 15 s (ERO), while the other ten blocks were subjected to abrasion by brushing (ERO+ABR). Dentin erosive wear was assessed by profilometry. Data were submitted to 2-way ANOVA and to the Holm-Sidak test (p<0.05). Dentin erosive wear was significantly higher for ERO+ABR than for ERO for all varnishes. TMP-containing varnishes promoted superior effects against dentin erosive wear compared with 5% NaF alone; and 5% nanosized TMP led to the lowest wear among all varnishes. In conclusion, the addition of TMP to conventional fluoride varnish (i.e., varnish containing only NaF) enhanced its protective effects against bovine root dentin erosion and erosion+abrasion. Additionally, the use of 5% nanosized TMP led to superior effects in comparison to 5% micrometric TMP, both for erosion and erosion+abrasion in vitro.


Assuntos
Dentina , Fluoretos Tópicos , Teste de Materiais , Polifosfatos , Fluoreto de Sódio , Propriedades de Superfície , Erosão Dentária , Bovinos , Animais , Polifosfatos/farmacologia , Polifosfatos/química , Dentina/efeitos dos fármacos , Fluoreto de Sódio/farmacologia , Erosão Dentária/prevenção & controle , Fluoretos Tópicos/farmacologia , Análise de Variância , Fatores de Tempo , Propriedades de Superfície/efeitos dos fármacos , Distribuição Aleatória , Reprodutibilidade dos Testes , Nanopartículas/química , Abrasão Dentária/prevenção & controle , Saliva Artificial/química , Ácido Cítrico/farmacologia , Valores de Referência , Testes de Dureza
2.
Braz Oral Res ; 38: e036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747823

RESUMO

This study aimed to evaluate in vitro the effect protocols and anticaries agents containing casein amorphous calcium fluoride phosphopeptide-phosphate (CPP-ACPF, MI Paste Plus), sodium trimetaphosphate (TMP) and fluoride (F), in remineralization of caries lesions. Bovine enamel blocks with initial caries lesions were divided into groups (n = 12): 1) Toothpaste without F-TMP-MI Plus (Placebo); 2) Toothpaste 1100 ppm F (1100F), 3) 1100F + MI Paste Plus (1100F-MI Paste Plus), 4) Toothpaste with 1100F + Neutral gel with 4,500 ppm F + 5%TMP (1100F + Gel TMP) and 5) Toothpaste with 1100F + Neutral gel with 9,000 ppm F (1100F + Gel F). For the 4 and 5 groups the gel was applied only once for 1 minute, initially to the study. For the 3 group, after treatment with 1100F, MI Paste Plus was applied 2x/day for 3 minute. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); profile and depth of the subsuperficial lesion (PLM); concentrations of F, calcium (Ca) and phosphorus (P) in enamel was determined. The data were analyzed by ANOVA (1-criterion) and Student-Newman-Keuls test (p < 0.001). Treatment with 1100F alone led to ~ 28% higher remineralization when compared to treatment with 1100F associated with MI Paste Plus (p < 0.001). The 1100F and 1100F + Gel F groups showed similar values for %SHR (p = 0.150). 1100F + Gel TMP treatment also remineralized the enamel surface by ~ 30% and 20% when compared to the 1100F + Gel F and 1100F groups (p < 0.001). The lower lesion depth (ΔKHN) was observed for the 1100F + Gel TMP group (p < 0.001), where it was 54% and 44% lower in comparison to the 1100F and 1100F + Gel F groups (p < 0.001). Polarized light microscopy photomicrographs showed subsurface lesions in all groups, but these lesions were present to a lower extent in the 1100F + Gel TMP group (p < 0.001). Treatment with 1100F + Gel TMP promoted an increase in the concentration of Ca in the enamel by ~ 57% and ~ 26% when compared to the 1100F and 1100F + MI Paste Plus groups (p < 0.001), respectively. There were no significant differences between the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001). Similar values of P in the enamel were observed in the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001), except for the 1100F + Gel TMP group, which presented a high concentration (p < 0.001). We conclude that the 1100F+TMP gel treatment/protocol led to a significant increased remineralization when compared to the other treatments/protocols and may be a promising strategy for patients with early caries lesions.


Assuntos
Cariostáticos , Caseínas , Esmalte Dentário , Fluoretos , Remineralização Dentária , Caseínas/farmacologia , Caseínas/uso terapêutico , Remineralização Dentária/métodos , Bovinos , Animais , Esmalte Dentário/efeitos dos fármacos , Cariostáticos/farmacologia , Fluoretos/farmacologia , Fatores de Tempo , Cremes Dentais/química , Cárie Dentária/tratamento farmacológico , Análise de Variância , Reprodutibilidade dos Testes , Polifosfatos/farmacologia , Polifosfatos/química , Polifosfatos/uso terapêutico , Testes de Dureza , Concentração de Íons de Hidrogênio , Propriedades de Superfície/efeitos dos fármacos , Teste de Materiais , Resultado do Tratamento , Valores de Referência , Dureza/efeitos dos fármacos , Fosfatos
3.
J Dent ; 146: 105073, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38782176

RESUMO

OBJECTIVES: Evaluate, in vitro, the effect of incorporating nano-sized sodium trimetaphosphate (TMPnano) and phosphorylated chitosan (Chi-Ph) into resin-modified glass ionomer cement (RMGIC) used for orthodontic bracket cementation, on mechanical, fluoride release, antimicrobial and cytotoxic properties. METHODS: RMGIC was combined with Chi-Ph (0.25%/0.5%) and/or TMPnano (14%). The diametral compressive/tensile strength (DCS/TS), surface hardness (SH) and degree of conversion (%DC) were determined. For fluoride (F) release, samples were immersed in des/remineralizing solutions. Antimicrobial/antibiofilm activity was evaluated by the agar diffusion test and biofilm metabolism (XTT). Cytotoxicity in fibroblasts was assessed with the resazurin method. RESULTS: After 24 h, the RMGIC-14%TMPnano group showed a lower TS value (p < 0.001); after 7 days the RMGIC-14%TMPnano-0.25%Chi-Ph group showed the highest value (p < 0.001). For DCS, the RMGIC group (24 h) showed the highest value (p < 0.001); after 7 days, the highest value was observed for the RMGIC-14%TMPnano-0.25%Chi-Ph (p < 0.001). RMGIC-14%TMPnano, RMGIC-14%TMPnano-0.25%Chi-Ph, RMGIC-14%TMPnano-0.5%Chi-Ph showed higher and similar release of F (p > 0.001). In the SH, the RMGIC-0.25%Chi-Ph; RMGIC-0.5%Chi-Ph; RMGIC-14%TMPnano-0.5%Chi-Ph groups showed similar results after 7 days (p > 0.001). The RMGIC-14%TMPnano-0.25%Chi-Ph group showed a better effect on microbial/antibiofilm growth, and the highest efficacy on cell viability (p < 0.001). After 72 h, only the RMGIC-14%TMPnano-0.25%Chi-Ph group showed cell viability (p < 0.001). CONCLUSION: The RMGIC-14%TMPnano-0.25%Chi-Ph did not alter the physical-mechanical properties, was not toxic to fibroblasts and reduced the viability and metabolism of S. mutans. CLINICAL RELEVANCE: The addition of phosphorylated chitosan and organic phosphate to RMGIC could provide an antibiofilm and remineralizing effect on the tooth enamel of orthodontic patients, who are prone to a high cariogenic challenge due to fluctuations in oral pH and progression of carious lesions.


Assuntos
Antibacterianos , Biofilmes , Quitosana , Fibroblastos , Fluoretos , Cimentos de Ionômeros de Vidro , Teste de Materiais , Quitosana/farmacologia , Antibacterianos/farmacologia , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/química , Biofilmes/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Fosforilação , Fluoretos/farmacologia , Dureza , Resistência à Tração , Propriedades de Superfície , Força Compressiva , Nanopartículas , Cimentos de Resina/química , Polifosfatos/farmacologia , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Sobrevivência Celular/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Animais , Fosfatos/farmacologia , Humanos , Braquetes Ortodônticos
4.
Arch Oral Biol ; 163: 105973, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38669744

RESUMO

OBJECTIVE: The study assessed the effect of low-fluoride gels supplemented with micrometric or nano-sized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. DESIGN: Bovine dentin blocks (n = 154) were selected by surface microhardness and randomly allocated into seven groups (n = 22/group), according to the gels: Placebo; 4500 ppm F (4500F); 9000 ppm F (9000F); 5% TMP microparticulate plus 4500F (5TMPm+4500F); 2.5% TMP nanoparticulate plus 4500 F (2.5TMPn+4500F); 5% TMP nanoparticulate plus 4500F (5TMPn+4500F); and 12,300 ppm F acid gel (APF). All blocks were treated only once for 60 s and cyclically eroded (ERO, citric acid, 4 × 90 s/day) or eroded and brushed (4 × 15 s/day, five strokes/s, ERO+ABR) over five days (each subgroup n = 11). Dentin wear and integrated hardness loss in depth (ΔKHN) were determined, and the data were submitted to two-way ANOVA, followed by Tukey's test, and Spearman's correlation (p < 0.05). RESULTS: For ERO, all gels containing 4500F supplemented with TMP significantly reduced dentin wear compared with their counterpart without TMP, reaching values similar to 9000F. For ERO+ABR, 5TMPn+ 4500F gel led to significantly lower wear than all its counterparts, reaching values similar to 9000F and APF. As for ΔKHN, all gels containing TMP promoted superior protective effects compared with 4500F, reaching values similar to 9000F and APF under both challenges. A positive correlation between dentin wear and mineral content in depth was verified. CONCLUSIONS: Gels containing 4500F supplemented with TMP significantly reduced dentin erosive wear compared with pure 4500F, with additional benefit from the use of nanoparticles.


Assuntos
Dentina , Fluoretos , Géis , Nanopartículas , Polifosfatos , Erosão Dentária , Polifosfatos/farmacologia , Animais , Bovinos , Erosão Dentária/prevenção & controle , Dentina/efeitos dos fármacos , Fluoretos/farmacologia , Técnicas In Vitro , Dureza , Distribuição Aleatória , Propriedades de Superfície
5.
J Dent ; 145: 105013, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38648875

RESUMO

OBJECTIVE: To assess the protective effect of fluoride (F) gels supplemented with micrometric or nano-sized sodium trimetaphosphate (TMPmicro and TMPnano, respectively) against enamel erosion in vitro. METHODS: Bovine enamel blocks (n = 140) were selected according to their surface hardness, and randomly divided into seven groups (n = 20/group), according to the gels tested: Placebo (without F/TMP), 4,500 µg F/g (4500F), 9,000 µg F/g (9000F), 4500F plus 2.5 % TMPnano (2.5 % Nano), 4500F plus 5 % TMPnano (5 % Nano), 4500F plus 5 % TMPnano (Micro 5 %) and 12,300 µg F/g (Acid gel). Blocks were treated once during one minute with the gels, and submitted to erosive (ERO, n = 10/group) or erosive plus abrasive (ERO+ABR, n = 10/group) challenges 4 times/day, for 90 s for each challenge (under reciprocating agitation), during consecutive 5 days. Blocks were analyzed by profilometry, and by surface (SH) and cross-sectional hardness (∆KHN). Data were submitted to two-way ANOVA, and Fisher's LSD test (p < 0.05). RESULTS: For ERO, both TMPnano-containing gels promoted enamel wear significantly lower than Placebo and 4500F, reaching levels similar to both positive controls (9000F and acid gel); significantly lower softening was observed for enamel treated with 4500F+5 % Micro and 4500F+2.5 % Nano. Also, the lowest ∆KHN values were observed for 4500F+2.5 % TMPnano among the TMP-containing gels. For ERO+ABR, the lowest enamel wear was achieved by the use of 4500F+5 % Nano among all gels, including both positive controls; lower softening was observed for Placebo and 9000F groups. CONCLUSION: The addition of 5 % nano-sized TMP to a low-fluoride gel produced superior protective effects for enamel under both challenges conditions, when compared with micrometric TMP, reaching values similar to or superior than both positive controls, respectively for ERO and ERO+ABR. CLINICAL SIGNIFICANCE: The supplementation of low-F gels with TMP was shown to significantly improve their effects on enamel erosive wear, and the use of nano-sized TMP further enhances this protective action.


Assuntos
Cariostáticos , Esmalte Dentário , Géis , Dureza , Nanopartículas , Polifosfatos , Erosão Dentária , Animais , Bovinos , Esmalte Dentário/efeitos dos fármacos , Polifosfatos/farmacologia , Erosão Dentária/prevenção & controle , Cariostáticos/farmacologia , Cariostáticos/uso terapêutico , Distribuição Aleatória , Fluoretos/uso terapêutico , Placebos , Fatores de Tempo
6.
J Dent ; 145: 104966, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38554802

RESUMO

INTRODUCTION: The decline in dental caries has been attributed to the widespread use of fluoride (F). Two forms of presentation are fluoridated toothpaste (FT) and mouthwash (MW), widely used by the population. MATERIALS AND METHODS: This study aimed to evaluate in vitro the effects of combining FT and MW, whether supplemented with sodium trimetaphosphate (TMP) or not, on dental enamel demineralization. Bovine enamel blocks (n = 60) were selected based on initial surface hardness (SHi) and divided into 5 experimental groups (n = 12 each): I) Placebo Toothpaste (without F/TMP); II) 1100 ppm F Toothpaste (FT); III) 1100F associated with a MW at 100 ppm F (FT + MW 100F); IV) 1100F associated with a MW at 225 ppm F (FT + MW 250F); and V) 1100F associated with a MW at 100 ppm F supplemented with 0.4 % TMP (FT + MW 100F-TMP). The blocks were treated twice a day, undergoing 5 pH cycles over 7 days. Thus, the percentage change in surface hardness (%SH), integrated subsurface hardness loss (ΔKHN), and the concentration of F, phosphorus (P), and calcium (Ca) in the enamel were determined. The data were submitted to ANOVA and Student-Newman-Keuls test (p < 0.001). RESULTS: The 1100F group was statistically inferior to the groups associated with MW for %SH, ΔKHN, and the concentration of P and Ca in the enamel (p < 0.001). Blocks treated with FT + MW 225F and FT + MW 100F-TMP showed significantly lower %SH compared to the other groups (p < 0.001). The FT + MW 100F - TMP group exhibited the lowest depth mineral loss (ΔKHN), and higher concentration de P in enamel (p < 0.001). CONCLUSION: The adjunct use of MW with FT produces a greater protective effect in inhibiting enamel demineralization, and the supplementation of TMP to the MW with 100F provides a superior effect compared to MW with 225F. CLINICAL SIGNIFICANCE: This combination of treatments could be regarded as one of several alternative fluoride supplements for subjects at elevated risk of caries.


Assuntos
Cariostáticos , Esmalte Dentário , Fluoretos , Dureza , Antissépticos Bucais , Polifosfatos , Desmineralização do Dente , Cremes Dentais , Animais , Bovinos , Polifosfatos/uso terapêutico , Polifosfatos/farmacologia , Desmineralização do Dente/prevenção & controle , Esmalte Dentário/efeitos dos fármacos , Cariostáticos/uso terapêutico , Cremes Dentais/uso terapêutico , Cremes Dentais/química , Antissépticos Bucais/uso terapêutico , Fluoretos/uso terapêutico , Concentração de Íons de Hidrogênio , Cálcio/uso terapêutico , Cálcio/análise , Teste de Materiais
7.
Clin Oral Investig ; 28(1): 119, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277034

RESUMO

OBJECTIVES: To evaluate the anti-demineralizing effect of a mouthwash comprising pomegranate peel extract (PPE 3%), sodium trimetaphosphate (TMP 0.3%), and fluoride (F 225 ppm) in an in situ study, and to assess its irritation potential in an ex vivo study. METHODS: This double-blind crossover study was conducted in four phases with 7 days each. Twelve volunteers used palatal appliances containing enamel blocks, which were subjected to cariogenic challenges. The ETF formulation (PPE + TMP + F, pH 7.0), TF formulation (TMP + F, pH 7.0), deionized water (W, pH 7.0), and essential oil commercial mouthwash (CM, 220 ppm F, pH 4.3) were dropped onto the enamel twice daily. The percentage of surface hardness loss, integrated loss of subsurface hardness, calcium, phosphorus, and fluoride in enamel and biofilms were determined. In addition, alkali-soluble extracellular polysaccharide concentrations were analyzed in the biofilms. The irritation potential was evaluated using the hen's egg chorioallantoic membrane test through the vascular effect produced during 300-s of exposure. RESULTS: ETF was the most efficacious in preventing demineralization. It also showed the highest concentrations of calcium and phosphorus in the enamel and in the biofilm, as well as the lowest amount of extracellular polysaccharides in the biofilm. In the eggs, ETF produced light reddening, whereas CM led to hyperemia and hemorrhage. CONCLUSIONS: The addition of PPE to formulations containing TMP and F increased its anti-demineralizing property, and this formulation presented a lower irritation potential than the CM. CLINICAL RELEVANCE: ETF can be a promising alternative alcohol-free mouthwash in patients at high risk of caries.


Assuntos
Antissépticos Bucais , Extratos Vegetais , Punica granatum , Desmineralização do Dente , Humanos , Cálcio/análise , Estudos Cross-Over , Esmalte Dentário , Fluoretos , Dureza , Antissépticos Bucais/química , Antissépticos Bucais/farmacologia , Fósforo , Polifosfatos , Desmineralização do Dente/prevenção & controle , Extratos Vegetais/farmacologia
8.
Braz. oral res. (Online) ; 38: e056, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1564205

RESUMO

Abstract This study evaluated the effect of fluoride varnishes containing micrometric or nanosized sodium trimetaphosphate (TMP) on dentin erosive wear in vitro. Bovine root dentin blocks were selected by surface hardness and randomly divided into five experimental groups/varnishes (n = 20/group): placebo, 5% sodium fluoride (NaF); 5% NaF+5% micrometric TMP; 5% NaF+2.5% nanosized TMP; and 5% NaF+5% nanosized TMP. Half of the surface of all blocks received a single application of the assigned varnish, with subsequent immersion in artificial saliva for 6 h. Varnishes were then removed and the blocks were immersed in citric acid (90 s, 4×/day, 5 days). After each erosive cycle, ten blocks of each group were immersed in a placebo dentifrice for 15 s (ERO), while the other ten blocks were subjected to abrasion by brushing (ERO+ABR). Dentin erosive wear was assessed by profilometry. Data were submitted to 2-way ANOVA and to the Holm-Sidak test (p<0.05). Dentin erosive wear was significantly higher for ERO+ABR than for ERO for all varnishes. TMP-containing varnishes promoted superior effects against dentin erosive wear compared with 5% NaF alone; and 5% nanosized TMP led to the lowest wear among all varnishes. In conclusion, the addition of TMP to conventional fluoride varnish (i.e., varnish containing only NaF) enhanced its protective effects against bovine root dentin erosion and erosion+abrasion. Additionally, the use of 5% nanosized TMP led to superior effects in comparison to 5% micrometric TMP, both for erosion and erosion+abrasion in vitro.

9.
Braz. oral res. (Online) ; 38: e036, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1557370

RESUMO

Abstract This study aimed to evaluate in vitro the effect protocols and anticaries agents containing casein amorphous calcium fluoride phosphopeptide-phosphate (CPP-ACPF, MI Paste Plus), sodium trimetaphosphate (TMP) and fluoride (F), in remineralization of caries lesions. Bovine enamel blocks with initial caries lesions were divided into groups (n = 12): 1) Toothpaste without F-TMP-MI Plus (Placebo); 2) Toothpaste 1100 ppm F (1100F), 3) 1100F + MI Paste Plus (1100F-MI Paste Plus), 4) Toothpaste with 1100F + Neutral gel with 4,500 ppm F + 5%TMP (1100F + Gel TMP) and 5) Toothpaste with 1100F + Neutral gel with 9,000 ppm F (1100F + Gel F). For the 4 and 5 groups the gel was applied only once for 1 minute, initially to the study. For the 3 group, after treatment with 1100F, MI Paste Plus was applied 2x/day for 3 minute. After pH cycling, the percentage of surface hardness recovery (%SHR); integrated loss of subsurface hardness (ΔKHN); profile and depth of the subsuperficial lesion (PLM); concentrations of F, calcium (Ca) and phosphorus (P) in enamel was determined. The data were analyzed by ANOVA (1-criterion) and Student-Newman-Keuls test (p < 0.001). Treatment with 1100F alone led to ~ 28% higher remineralization when compared to treatment with 1100F associated with MI Paste Plus (p < 0.001). The 1100F and 1100F + Gel F groups showed similar values for %SHR (p = 0.150). 1100F + Gel TMP treatment also remineralized the enamel surface by ~ 30% and 20% when compared to the 1100F + Gel F and 1100F groups (p < 0.001). The lower lesion depth (ΔKHN) was observed for the 1100F + Gel TMP group (p < 0.001), where it was 54% and 44% lower in comparison to the 1100F and 1100F + Gel F groups (p < 0.001). Polarized light microscopy photomicrographs showed subsurface lesions in all groups, but these lesions were present to a lower extent in the 1100F + Gel TMP group (p < 0.001). Treatment with 1100F + Gel TMP promoted an increase in the concentration of Ca in the enamel by ~ 57% and ~ 26% when compared to the 1100F and 1100F + MI Paste Plus groups (p < 0.001), respectively. There were no significant differences between the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001). Similar values of P in the enamel were observed in the 1100F, 1100F + MI Paste Plus and 1100F + Gel F groups (p > 0.001), except for the 1100F + Gel TMP group, which presented a high concentration (p < 0.001). We conclude that the 1100F+TMP gel treatment/protocol led to a significant increased remineralization when compared to the other treatments/protocols and may be a promising strategy for patients with early caries lesions.

10.
J Dent ; 138: 104726, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37757908

RESUMO

OBJECTIVE: To evaluate the effect of fluoride (F) varnishes with sodium trimetaphosphate (TMP) on erosive tooth wear (ETW) in vitro. METHODS: Enamel blocks (n = 100) were divided into 5 experimental groups (n = 20/group): Placebo (Pla - without F/TMP); 5 % NaF (NaF); 5 % NaF + 5 % micrometric TMP (NaF+5 %MICRO); 5 % NaF + 2.5 % nano-sized TMP (NaF+2.5 %NANO), and 5 % NaF + 5 % nano-sized TMP (NaF+5 %NANO). Blocks received a single varnish application (6 h contact), and were submitted to 4 daily erosive challenges (ERO, 0.05 M citric acid, pH 3.2, 90 s, under agitation), for 5 days. After ERO, half of the blocks (n = 10/group) were subjected to brushing abrasion (ERO+ABR). Profilometry, surface hardness (SH), and cross-sectional hardness (ΔKHN) were determined. The data were submitted to 2-way ANOVA and Fisher's LSD test (p < 0.05). RESULTS: Enamel wear was significantly lower for ERO compared with ERO+ABR for all varnishes tested (p < 0.001), following the pattern NaF+5 %NANO < NaF+5 %MICRO < NaF < NaF+2.5 %NANO < Pla (both for ERO and ERO+ABR). The highest SH loss was observed for Pla and the lowest for NaF (ERO) and NaF+2.5 %NANO (ERO+ABR), without significant differences among NaF+2.5 %NANO, NaF, and NaF+5 %MICRO. The highest ΔKHN values were observed for NaF+5 %MICRO and NaF+5 %NANO at 5-30 µm, with less marked differences among the groups at 30-70 µm (ERO and ERO+ABR). CONCLUSIONS: The addition of TMP to F varnishes significantly improves protection against ETW in vitro. The use of 5 % nano-sized TMP further enhances such effects. CLINICAL SIGNIFICANCE: F varnishes containing TMP can reduce enamel loss caused by ERO or ERO+ABR.


Assuntos
Atrito Dentário , Doenças Dentárias , Erosão Dentária , Desgaste dos Dentes , Humanos , Cariostáticos/farmacologia , Estudos Transversais , Esmalte Dentário , Fluoretos/farmacologia , Fluoretos Tópicos/farmacologia , Dureza , Fluoreto de Sódio/farmacologia , Fluoreto de Sódio/uso terapêutico , Erosão Dentária/prevenção & controle
11.
Antibiotics (Basel) ; 12(8)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37627754

RESUMO

This study evaluated the antimicrobial effect of toothpastes containing 200 ppm fluoride (200F), xylitol (X, 16%), erythritol (E, 4%), and sodium trimetaphosphate (TMP, 0.25%), alone or in different associations, against Streptococcus mutans (SM), Lactobacillus casei (LC), Actinomyces israelii (AI), and Candida albicans (CA). Suspensions of the micro-organisms were added to a BHI Agar medium. Five wells were made on each plate to receive toothpaste suspensions at different dilutions. Toothpastes containing no actives (placebo) or 1100 ppm F (1100F) were used as negative and positive controls. Two-way ANOVA and Tukey's HDS test were used (p < 0.05). For SM, the largest halo was for 200F+TMP at all dilutions, followed by the 200F+X+E toothpaste (p < 0.001). For LC, the overall trend showed that the polyols effectively inhibited microbial growth, and the association with the other compounds enhanced such effects (p < 0.001). For AI, a less-defined trend was observed. For CA, the experimental toothpaste (200F+X+E+TMP) was consistently more effective than the other treatments, followed by 200F+X+E (p < 0.001). The association of polyols and TMP in a low-fluoride toothpaste effectively reduced the growth of cariogenic micro-organisms (SM, CA, and LC), suggesting that this formulation could be an interesting alternative for children due to its low fluoride content.

12.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629091

RESUMO

Although the association of polyols/polyphosphates/fluoride has been demonstrated to promote remarkable effects on dental enamel, little is known on their combined effects on biofilms. This study assessed the effects of solutions containing fluoride/sodium trimetaphosphate (TMP)/xylitol/erythritol on dual-species biofilms of Streptococcus mutans and Candida albicans. Biofilms were grown in the continuous presence of these actives alone or in different associations. Quantification of viable plate counts, metabolic activity, biofilm biomass, and extracellular matrix components were evaluated. Overall, fluoride and TMP were the main actives that significantly influenced most of the variables analyzed, with a synergistic effect between them for S. mutans CFUs, biofilm biomass, and protein content of the extracellular matrix (p < 0.05). A similar trend was observed for biofilm metabolic activity and carbohydrate concentrations of the extracellular matrix, although without statistical significance. Regarding the polyols, despite their modest effects on most of the parameters analyzed when administered alone, their co-administration with fluoride and TMP led to a greater reduction in S. mutans CFUs and biofilm biomass compared with fluoride alone at the same concentration. It can be concluded that fluoride and TMP act synergistically on important biofilm parameters, and their co-administration with xylitol/erythritol significantly impacts S. mutans CFUs and biomass reduction.


Assuntos
Fluoretos , Xilitol , Fluoretos/farmacologia , Xilitol/farmacologia , Polifosfatos/farmacologia , Biofilmes , Eritritol/farmacologia
13.
J. appl. oral sci ; 31: e20220410, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1430626

RESUMO

Abstract Regular use of toothpaste with fluoride (F) concentrations of ≥ 1000 ppm has been shown to contribute to reducing caries increment. However, when used by children during the period of dental development, it can lead to dental fluorosis. Objective: In this study, we aimed to evaluate the in vitro effect of a toothpaste formulation with reduced fluoride (F) concentration (200 ppm) supplemented with sodium trimetaphosphate (TMP: 0.2%), Xylitol (X:16%), and Erythritol (E: 4%) on dental enamel demineralization. Methodology: Bovine enamel blocks were selected according to initial surface hardness (SHi) and then divided into seven experimental toothpaste groups (n=12). These groups included 1) no F-TMP-X-E (Placebo); 2) 16% Xylitol and 4% Erythritol (X-E); 3) 16% Xylitol, 4% Erythritol and 0.2%TMP (X-E-TMP); 4) 200 ppm F (no X-E-TMP: (200F)); 5) 200 ppm F and 0.2% TMP (200F-TMP); 200 ppm F, 16% Xylitol, 4% Erythritol, and 0.2% TMP (200F-X-E-TMP); and 7) 1,100 ppm F (1100F). Blocks were individually treated 2×/day with slurries of toothpastes and subjected to a pH cycling regimen for five days (DES: 6 hours and RE: 18 hours). Then, the percentage of surface hardness loss (%SH), integrated loss of subsurface hardness (ΔKHN), fluoride (F), calcium (Ca), and phosphorus (P) in enamel were determined. The data were analyzed by ANOVA (1-criterion) and the Student-Newman-Keuls test (p<0.001). Results: We found that the 200F-X-E-TMP treatment reduced %SH by 43% compared to the 1100F treatments (p<0.001). The ΔKHN was ~ 65% higher with 200F-X-E-TMP compared to 1100F (p<0.001). The highest concentration of F in enamel was observed on the 1100F treatment (p<0.001). The 200F-X-E-TMP treatment promote higher increase of Ca and P concentration in the enamel (p<0.001). Conclusion: The association of 200F-X-E-TMP led to a significant increase of the protective effect on enamel demineralization compared to the 1100F toothpaste.

14.
J. appl. oral sci ; 31: e20230155, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448555

RESUMO

Abstract Objective To evaluate the effects of fluoride (F) gels supplemented with micrometric or nano-sized sodium trimetaphosphate (TMPmicro and TMPnano, respectively) on the in vitro remineralization of caries-like lesions. Methodology Bovine enamel subsurface lesions (n=168) were selected according to their surface hardness (SH) and randomly divided into seven groups (n=24/group): Placebo (without F/TMP), 4,500 ppm F (4500F), 4500F + 2.5% TMPnano (2.5% Nano), 4500F + 5% TMPnano (5% Nano), 4500F + 5% TMPmicro (5% Micro), 9,000 ppm F (9000F), and 12,300 ppm F (Acid gel). The gels were applied in a thin layer for one minute. Half of the blocks were subjected to pH cycling for six days, whereas the remaining specimens were used for loosely- (calcium fluoride; CaF2) and firmly-bound (fluorapatite; FA) fluoride analysis. The percentage of surface hardness recovery (%SHR), area of subsurface lesion (ΔKHN), CaF2, FA, calcium (Ca), and phosphorus (P) on/in enamel were determined. Data (log10-transformed) were subjected to ANOVA and the Student-Newman-Keuls' test (p<0.05). Results We observed a dose-response relation between F concentrations in the gels without TMP for %SHR and ΔKHN. The 2.5% Nano and 5% Micro reached similar %SHR when compared with 9000F and Acid gels. For ΔKHN, Placebo and 5% Nano gels had the highest values, and 5% Micro, 2.5% Nano, 9000F, and Acid gels, the lowest. All groups had similar retained CaF2 values, except for Placebo and Acid gel. We verified observed an increase in Ca concentrations in nano-sized TMP groups. Regarding P, TMP groups showed similar formation and retention to 9000F and Acid. Conclusion Adding 2.5% nano-sized or 5% micrometric TMP to low-fluoride gels lead to enhanced in vitro remineralization of artificial caries lesions.

15.
Antibiotics (Basel) ; 11(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36358132

RESUMO

This study investigated the anti-caries and anti-inflammatory effects of mouthwash formulations containing Punica granatum (pomegranate) peel extract (PPE), sodium-trimetaphosphate, and low concentrations of fluoride. PPE was characterized using high-performance liquid chromatography (ellagic acid and punicalagin). Total phenolics were quantified among formulations, and their stability was analyzed for 28 days. The formulation effects were evaluated as follows: (1) inorganic component concentration and reduced demineralization on bovine enamel blocks subjected to pH cycling; (2) anti-biofilm effect on dual-biofilms of Streptococcus mutans ATCC 25175 and Candida albicans ATCC 10231 treated for 1 and 10 min, respectively; and (3) cytotoxicity and production of inflammatory mediators (interleukin-6 and tumor necrosis factor-alpha). The formulation containing 3% PPE, 0.3% sodium-trimetaphosphate, and 225 ppm of fluoride resulted in a 34.5% surface hardness loss; a 13% (treated for 1 min) and 36% (treated for 10 min) biofilm reduction in S. mutans; a 26% (1 min) and 36% (10 min) biofilm reduction in C. albicans; absence of cytotoxicity; and anti-inflammatory activity confirmed by decreased interleukin-6 production in mouse macrophages. Thus, our results provide a promising prospect for the development of an alcohol-free commercial dental product with the health benefits of P. granatum that have been recognized for a millennium.

16.
Arch Oral Biol ; 143: 105541, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116379

RESUMO

OBJECTIVE: to investigate the ability of solutions containing sodium hexametaphosphate, fluoride and quercetin, alone or in association, to prevent dentin erosion and to inhibit matrix metalloproteinases -2 and -9 activity using in vitro protocols. DESIGN: Root dentin blocks (n = 96) were prepared and divided into 8 experimental groups (n = 12/group), according to the solutions to be tested: Placebo; 0.24% sodium fluoride (F); 1.0% sodium hexametaphosphate (HMP); 0.03% quercetin (QC); F+HMP; F+QC; HMP+QC; and F+HMP+QC. Erosive challenges were performed 4×/day for 5 days. Specimens were treated with the respective solutions for one minute, twice a day. Next, dentin loss (profilometry) and integrated hardness area in depth (KHN × µm) were determined. The antiproteolytic potential was assessed by gelatin zymography. Dentin erosion results (log10-transformed) were submitted to one-way ANOVA, followed by Tukey's test. Integrated hardness area in depth data (raw) were submitted to two-way, repeated-measures ANOVA, followed by Holm-Sidak's test (p<0.05). RESULTS: Dentin erosion was significantly lower for F+HMP+QC than for all other treatments. At the shallowest depths (5-30 µm), blocks treated with F+HMP+QC had the highest integrated hardness area in depth values. All treatments completely inhibited matrix metalloproteinases-2 activity, except for the group QC (77% inhibition). For matrix metalloproteinases-9, all HMP-containing solutions or F+QC promoted total antiproteolytic activity. CONCLUSION: The association of fluoride, sodium hexametaphosphate, and quercetin must be considered a valuable strategy for novel product formulation for home and professional use, considering its superior protective effects against dentin erosion and its antiproteolytic potential.


Assuntos
Fluoretos , Erosão Dentária , Dentina , Fluoretos/farmacologia , Gelatina/farmacologia , Humanos , Metaloproteinase 2 da Matriz , Fosfatos , Quercetina/farmacologia , Fluoreto de Sódio/farmacologia , Erosão Dentária/tratamento farmacológico , Erosão Dentária/prevenção & controle
17.
J Appl Oral Sci ; 30: e20210698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35920506

RESUMO

OBJECTIVE: A new sugarcane-derived cystatin (CaneCPI-5) showed anti-erosive properties when included in solutions and strong binding force to enamel, but the performance of this protein when added to gel formulations and its effect on surface free energy (SFE) requires further studies. 1) to evaluate the protective effect of gels containing different concentrations of CaneCPI-5 against initial enamel erosion (Experiment 1); and 2) to analyze the SFE (γS) after treating the enamel surface with CaneCPI-5 solution (Experiment 2). METHODOLOGY: In Experiment 1, 75 bovine enamel specimens were divided into five groups according to the gel treatments: placebo (negative control); 0.27%mucin+0.5%casein (positive control); 0.1 mg/mL CaneCPI-5; 1.0 mg/mL CaneCPI-5; or 2.0 mg/mL CaneCPI-5. Specimens were treated with the gels for 1 min, the AP was formed (human saliva) for 2 h and the specimens were incubated in 0.65% citric acid (pH=3.4) for 1 min. The percentage of surface hardness change (%SHC) was estimated. In Experiment 2, measurements were performed by an automatic goniometer using three probing liquids: diiodomethane, water and ethylene glycol. Specimens (n=10/group) remained untreated (control) or were treated with solution containing 0.1 mg/mL CaneCPI-5, air-dried for 45 min, and 0.5 µL of each liquid was dispensed on the surface to measure contact angles. RESULTS: Gels containing 0.1 and 1.0 mg/mL CaneCPI-5 significantly reduced %SHC compared to the other treatments (p<0.05). Treated enamel showed significantly lower γS than control, without changes in the apolar component (γSLW), but the polar component (γSAB=Lewis acid-base) became more negative (p<0.01). Moreover, CaneCPI-5 treatment showed higher γS - (electron-donor) values compared to control (p<0.01). CONCLUSIONS: Gels containing 0.1 mg/mL or 1.0 mg/mL CaneCPI-5 protected enamel against initial dental erosion. CaneCPI-5 increased the number of electron donor sites on the enamel surface, which may affect AP formation and could be a potential mechanism of action to protect from erosion.


Assuntos
Cistatinas , Saccharum , Erosão Dentária , Animais , Bovinos , Cistatinas/farmacologia , Cistatinas/uso terapêutico , Esmalte Dentário , Géis , Erosão Dentária/prevenção & controle
18.
J Dent ; 125: 104245, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35914572

RESUMO

OBJECTIVES: The aim of this study were to produce a multifunctional nanocomposite combining silver nanoaparticles (Ag), sodium trimetaphosphate (TMP) and fluoride (F), to investigate its effect on dental enamel demineralization and on biofilms of Streptococcus mutans and Candida albicans. METHODS: Bovine enamel blocks were submitted to five pH cycles and treated 2x/day with 100 ppm F, 225 ppm F, 100 ppm F + 0.2%TMP or 100 ppm F + 0.2%TMP+10% Ag (100F/TMP/Ag). Next, surface hardness loss (%SH), integrated loss of subsurface hardness (ΔKHN), enamel fluoride (F) and calcium (Ca) concentration were determined. Biofilms from single and dual species of S. mutans and C. albicans were treated with 100F/TMP/Ag, Ag or chlorhexidine gluconate for 24 h. The antibiofilm effect was evaluated by colony-forming unit counting and Scanning Electron Microscopy. RESULTS: The nanocomposite reduced 43.0% of %SH and was similar with samples treated with 225F, 100F/TMP and 100/TMP/Ag. The attribute of F and/or TMP in reducing ΔKHN in 5-20 µm was not affected by the addiction of Ag (110F = 225F = 100F/TMP = 100F/TMP/Ag > Negative Control). Further, 100F/TMP/Ag strongly reduced viable cells of S. mutans in dual biofilms (∼5 log10cm2) and structurally affected the biofilms. CONCLUSION: The 100F/TMP/F promoted a protective effect against enamel demineralization and was able to significantly inhibit the growth of biofilms of S. mutans and C. albicans. CLINICAL SIGNIFICANCE: The focus on prevention and non-invasive dental treatment is the most effective and least costly way to improve the population's oral health conditions. We present a nanocomposite for a multiple approach in prevention of caries.


Assuntos
Cárie Dentária , Nanopartículas Metálicas , Desmineralização do Dente , Animais , Biofilmes , Cálcio , Candida albicans , Cariostáticos/farmacologia , Bovinos , Cárie Dentária/prevenção & controle , Esmalte Dentário , Fluoretos/farmacologia , Polifosfatos/farmacologia , Prata/farmacologia , Desmineralização do Dente/prevenção & controle
19.
J Appl Oral Sci ; 30: e20210483, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35352770

RESUMO

OBJECTIVES: To evaluate the mechanical, physicochemical, and antimicrobial properties of four different formulations containing micro- or nanoparticles of sodium trimetaphosphate (mTMP and nTMP, respectively). METHODOLOGY: Four experimental groups were used in this investigation: two mTMP groups and two nTMP groups, each containing zirconium oxide (ZrO2), and solution containing either chitosan or titanium oxide (TiO2) nanoparticles (NPs). Setting time, compression resistance, and radiopacity were estimated. The agar diffusion test was used to assess the antimicrobial activity of the formulations against five different microbial strains: Streptococcus mutans, Lactobacillus casei, Actinomyces israelii, Candida albicans, and Enterococcus faecalis. Parametric and nonparametric tests were performed after evaluating homoscedasticity data (p<0.05). RESULTS: From the properties evaluated, nTMP cements required less setting time and showed greater resistance to compression. Cements containing TiO2 showed greater radiopacity for both nTMP and mTMP. All four cement formulations showed antimicrobial activity against S. mutans and L. casei. CONCLUSION: Formulations containing nTMP have shorter setting times and higher compressive strength, and those with TiO2 nanoparticles showed antimicrobial activities. Clinical relevance: The cement containing nTMP, ZrO2, and TiO2 could be an alternative material for protecting the pulp complex.


Assuntos
Anti-Infecciosos , Capeamento da Polpa Dentária , Antibacterianos/química , Anti-Infecciosos/farmacologia , Cimentos Dentários/química , Polifosfatos
20.
Caries Res ; 56(1): 81-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34700319

RESUMO

It has been stated that sodium trimetaphosphate (TMP) promotes a more anionic dentin surface inducing greater calcium (Ca) and phosphate precipitation. The aim of the present study was to evaluate in vitro the surface free energy (γs) of dentin after treatment with TMP associated or not with fluoride (F), exposed or not to Ca, as well as the adsorption of TMP, F, and Ca by dentin. Bovine dentin blocks (n = 12 blocks/group) were treated with solutions containing TMP at 0, 1, 3, or 9 (w/v) followed or not by the application of Ca. These solutions were or were not associated to 1,100 ppm F. F, Ca, and TMP were determined in the solutions before and after the treatment to calculate the adsorption by dentin. To analyze the γs of dentin, the apolar (γsLW), and polar (γsAB), components were determined by contact angle measurement. Data were submitted to 2-way ANOVA followed by the Student-Newman-Keuls test (p < 0.05). TMP reduces γs of dentin and increases electron donor sites (γs-). Higher values of γs- led to higher adsorption of Ca (p < 0.001). The F/TMP association did not change γs or γsLW and reduced the values of γs-, but the adsorption of Ca was higher. There was correlation between the adsorption of TMP and γs- (Pearson's r = 0.801; p < 0.001) and F (Pearson's r = 0.871, p < 0.001). It is possible to conclude that TMP increased γs- and Ca adsorption, and reduced γs. The association with F increased the adsorption of TMP without rising γs-; however, there was higher adsorption of Ca.


Assuntos
Cálcio , Fluoretos , Animais , Bovinos , Dentina , Fluoretos/farmacologia , Humanos , Polifosfatos/farmacologia , Fluoreto de Sódio/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA