Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2269, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480682

RESUMO

Primary familial brain calcification (PFBC) is characterized by calcium deposition in the brain, causing progressive movement disorders, psychiatric symptoms, and cognitive decline. PFBC is a heterogeneous disorder currently linked to variants in six different genes, but most patients remain genetically undiagnosed. Here, we identify biallelic NAA60 variants in ten individuals from seven families with autosomal recessive PFBC. The NAA60 variants lead to loss-of-function with lack of protein N-terminal (Nt)-acetylation activity. We show that the phosphate importer SLC20A2 is a substrate of NAA60 in vitro. In cells, loss of NAA60 caused reduced surface levels of SLC20A2 and a reduction in extracellular phosphate uptake. This study establishes NAA60 as a causal gene for PFBC, provides a possible biochemical explanation of its disease-causing mechanisms and underscores NAA60-mediated Nt-acetylation of transmembrane proteins as a fundamental process for healthy neurobiological functioning.


Assuntos
Encefalopatias , Humanos , Acetilação , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encefalopatias/genética , Padrões de Herança , Mutação , Fosfatos/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo III/metabolismo
2.
J Transl Med ; 21(1): 171, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869348

RESUMO

BACKGROUND: Type 2 diabetes (T2D) is a critical healthcare challenge and priority in Qatar which is listed amongst the top 10 countries in the world, with its prevalence presently at 17% double the global average. MicroRNAs (miRNAs) are implicated in the pathogenesis of (T2D) and long-term microvascular complications including diabetic retinopathy (DR). METHODS: In this study, a T2D cohort that accurately matches the characteristics of the general population was employed to find microRNA (miRNA) signatures that are correlated with glycemic and ß cell function measurements. Targeted miRNA profiling was performed in (471) T2D individuals with or without DR and (491) (non-diabetic) healthy controls from the Qatar Biobank. Discovery analysis identified 20 differentially expressed miRNAs in T2D compared to controls, of which miR-223-3p was significantly upregulated (fold change:5.16, p = 3.6e-02) and positively correlated with glucose and hemoglobin A1c (HbA1c) levels (p-value = 9.88e-04 and 1.64e-05, respectively), but did not show any significant associations with insulin or C-peptide. Accordingly, we performed functional validation using a miR-223-3p mimic (overexpression) under control and hyperglycemia-induced conditions in a zebrafish model. RESULTS: Over-expression of miR-223-3p alone was associated with significantly higher glucose (42.7 mg/dL, n = 75 vs 38.7 mg/dL, n = 75, p = 0.02) and degenerated retinal vasculature, and altered retinal morphology involving changes in the ganglion cell layer and inner and outer nuclear layers. Assessment of retinal angiogenesis revealed significant upregulation in the expression of vascular endothelial growth factor and its receptors, including kinase insert domain receptor. Further, the pancreatic markers, pancreatic and duodenal homeobox 1, and the insulin gene expressions were upregulated in the miR-223-3p group. CONCLUSION: Our zebrafish model validates a novel correlation between miR-223-3p and DR development. Targeting miR-223-3p in T2D patients may serve as a promising therapeutic strategy to control DR in at-risk individuals.


Assuntos
Diabetes Mellitus Tipo 2 , Retinopatia Diabética , Hiperglicemia , MicroRNAs , Humanos , Animais , Controle Glicêmico , Peixe-Zebra , Fator A de Crescimento do Endotélio Vascular , Insulina , Glucose
3.
Blood Adv ; 7(5): 697-711, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36477543

RESUMO

Emerging gene therapy clinical trials test the correction of hemophilia A (HA) by replacing factor VIII (FVIII) in autologous hematopoietic stem cells (HSCs). Although it is known that platelets, monocyte/macrophages, and mesenchymal stromal cells can secrete transgenic FVIII, a systematic examination of blood lineages as extrahepatic sources of FVIII, to our knowledge, has not yet been performed. In this study, we sought to provide a comprehensive map of native and lentivirus-based transgenic FVIII production from HSC stage to mature blood cells, through a flow cytometry analysis. In addition, we generated a model of transient HA in zebrafish based on antisense RNA, to assess the corrective potential of the FVIII-transduced HSCs. We discovered that FVIII production begins at the CD34+ progenitor stage after cytokine stimulation in culture. Among all mature white blood cells, monocytes are the largest producers of native FVIII and can maintain protein overexpression during differentiation from HSCs when transduced by a FVIII lentiviral vector. Moreover, the addition of the HSC self-renewal agonist UM171 to CD34+ cells during transduction expanded a subpopulation of CD14+/CD31+ monocytes with excellent ability to carry the FVIII transgene, allowing the correction of HA phenotype in zebrafish. Finally, the HA zebrafish model showed that f8 RNA is predominantly localized in the hematopoietic system at the larval stage, which indicates a potential contributory role of FVIII in hematopoiesis that warrants further investigation. We believe that this study may be of broad interest to hematologists and researchers striving to advance knowledge and permanent treatments for patients with HA.


Assuntos
Hemofilia A , Hemostáticos , Animais , Fator VIII/genética , Células-Tronco Hematopoéticas/metabolismo , Hemofilia A/terapia , Monócitos/metabolismo , Peixe-Zebra/metabolismo , Humanos
4.
Sci Total Environ ; 741: 140450, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32886985

RESUMO

Surfactants are widely used in the industry of detergents, household products, and cosmetics. SAPDMA is a cationic surfactant that is used mostly in cosmetics, conditioning agents and has recently gained attention as a corrosion inhibitor in the sea pipelines industry. In this regard, literature concerning the ecotoxicological classification of SAPDMA on aquatic animals is lacking. This study aims to evaluate the potential ecotoxicity of SAPDMA using the aquatic zebrafish embryo model. The potential toxic effects of SAPDMA were assessed by different assays. This includes (i) mortality/survival assay to assess the median lethal concentration (LC50); (ii) teratogenicity assay to assess the no observed effect concentration (NOEC); (iii) organ-specific toxicity assays including cardiotoxicity, neurotoxicity (using locomotion assay), hematopoietic toxicity (hemoglobin synthesis using o-dianisidine staining), hepatotoxicity (liver steatosis and yolk retention using Oil Red O (ORO) stain); (iv) cellular cytotoxicity (mitochondrial membrane potential) by measuring the accumulation of JC-1 dye into mitochondria. Exposure of embryos to SAPDMA caused mortality in a dose-dependent manner with a calculated LC50 of 2.3 mg/L. Thus, based on the LC50 value and according to the Fish and Wildlife Service (FWS) Acute Toxicity Rating Scale, SAPDMA is classified as "moderately toxic". The No Observed Effect Concentration (NOEC) concerning a set of parameters including scoliosis, changes in body length, yolk, and eye sizes was 0.1 mg/L. At the same NOEC concentration (0.1 mg/L), no organ-specific toxicity was detected in fish treated with SAPDMA, except hepatomegaly with no associated liver dysfunctions. However, higher SAPDMA concentrations (0.8 mg/L) have dramatic effects on zebrafish organ development (eye, heart, and liver development). Our data recommend a re-evaluation of the SAPDMA employment in the industry setting and its strictly monitoring by environmental and public health agencies.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Dimetilaminas , Embrião não Mamífero , Dose Letal Mediana , Tensoativos
5.
Biomed Res Int ; 2018: 1642684, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30363733

RESUMO

Over the last decade, the zebrafish (Danio rerio) has emerged as a model organism for cardiovascular research. Zebrafish have several advantages over mammalian models. For instance, the experimental cost of using zebrafish is comparatively low; the embryos are transparent, develop externally, and have high fecundity making them suitable for large-scale genetic screening. More recently, zebrafish embryos have been used for the screening of a variety of toxic agents, particularly for cardiotoxicity testing. Zebrafish has been shown to exhibit physiological responses that are similar to mammals after exposure to medicinal drugs including xenobiotics, hormones, cancer drugs, and also environmental pollutants, including pesticides and heavy metals. In this review, we provided a summary for recent studies that have used zebrafish to investigate the molecular mechanisms of drug-induced cardiotoxicity. More specifically, we focused on the techniques that were exploited by us and others for cardiovascular toxicity assessment and described several microscopic imaging and analysis protocols that are being used for the estimation of a variety of cardiac hemodynamic parameters.


Assuntos
Cardiotoxicidade/etiologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Preparações Farmacêuticas/administração & dosagem , Peixe-Zebra/fisiologia , Animais , Hemodinâmica/fisiologia , Humanos
6.
Methods Mol Biol ; 1220: 29-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388243

RESUMO

The many advantages of the zebrafish model provide a unique opportunity to integrate the tools of developmental embryology, transgenesis, and functional assays to elucidate the molecular pathways underlying hematopoiesis and for modeling human blood diseases. These methodologies have recently been applied to the zebrafish mast cell lineage and have resulted in a better understanding of vertebrate mast cell biology. By employing whole-mount in situ hybridization alone and in combination with co-localization approaches, fluorescence-activated cell sorting (FACS), and morpholino gene knockdown studies, new insights into early mast cell transcriptional regulation and ontogeny have been exposed in vivo. Transgenic strategies have permitted the modeling of human mast cell diseases, like systemic mastocytosis in zebrafish, which can subsequently be exploited for high-throughput chemical screens to identify potential therapies in these conditions. Mast cell functional assays have been adapted to zebrafish providing the opportunity to utilize this model for interrogating the cellular players in innate and adaptive immunity and as a live animal readout for drug responses in allergic and inflammatory reactions. These techniques are detailed in the following chapter.


Assuntos
Mastócitos/citologia , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados , Antígenos/imunologia , Embrião não Mamífero/citologia , Embrião não Mamífero/imunologia , Feminino , Citometria de Fluxo , Humanos , Imunoglobulina E/imunologia , Imuno-Histoquímica , Hibridização In Situ , Masculino , Mastócitos/imunologia , Mastócitos/metabolismo , Mastócitos/ultraestrutura , Microscopia Eletrônica , Sondas RNA/metabolismo , Fixação de Tecidos , Triptases/metabolismo , Peixe-Zebra/genética
7.
Br J Haematol ; 167(1): 48-61, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24989799

RESUMO

Systemic mastocytosis (SM) is a rare myeloproliferative disease without curative therapy. Despite clinical variability, the majority of patients harbour a KIT-D816V mutation, but efforts to inhibit mutant KIT with tyrosine kinase inhibitors have been unsatisfactory, indicating a need for new preclinical approaches to identify alternative targets and novel therapies in this disease. Murine models to date have been limited and do not fully recapitulate the most aggressive forms of SM. We describe the generation of a transgenic zebrafish model expressing the human KIT-D816V mutation. Adult fish demonstrate a myeloproliferative disease phenotype, including features of aggressive SM in haematopoeitic tissues and high expression levels of endopeptidases, consistent with SM patients. Transgenic embryos demonstrate a cell-cycle phenotype with corresponding expression changes in genes associated with DNA maintenance and repair, such as reduced dnmt1. In addition, epcam was consistently downregulated in both transgenic adults and embryos. Decreased embryonic epcam expression was associated with reduced neuromast numbers, providing a robust in vivo phenotypic readout for chemical screening in KIT-D816V-induced disease. This study represents the first zebrafish model of a mast cell disease with an aggressive adult phenotype and embryonic markers that could be exploited to screen for novel agents in SM.


Assuntos
Expressão Gênica , Mastocitose Sistêmica/genética , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Animais Geneticamente Modificados , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Apoptose/genética , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Ciclo Celular/genética , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Modelos Animais de Doenças , Embrião não Mamífero/metabolismo , Molécula de Adesão da Célula Epitelial , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Ordem dos Genes , Vetores Genéticos , Hematopoese/genética , Humanos , Rim/patologia , Mastócitos/enzimologia , Mastocitose , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Fenótipo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Blood ; 119(15): 3585-94, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22368273

RESUMO

We used the opportunities afforded by the zebrafish to determine upstream pathways regulating mast cell development in vivo and identify their cellular origin. Colocalization studies demonstrated zebrafish notch receptor expression in cells expressing carboxypeptidase A5 (cpa5), a zebrafish mast cell-specific marker. Inhibition of the Notch pathway resulted in decreased cpa5 expression in mindbomb mutants and wild-type embryos treated with the γ-secretase inhibitor, Compound E. A series of morpholino knockdown studies specifically identified notch1b and gata2 as the critical factors regulating mast cell fate. Moreover, hsp70::GAL4;UAS::nicd1a transgenic embryos overexpressing an activated form of notch1, nicd1a, displayed increased cpa5, gata2, and pu.1 expression. This increase in cpa5 expression could be reversed and reduced below baseline levels in a dose-dependent manner using Compound E. Finally, evidence that cpa5 expression colocalizes with lmo2 in the absence of hematopoietic stem cells revealed that definitive mast cells initially delineate from erythromyeloid progenitors. These studies identify a master role for Notch signaling in vertebrate mast cell development and establish developmental origins of this lineage. Moreover, these findings postulate targeting the Notch pathway as a therapeutic strategy in mast cell diseases.


Assuntos
Linhagem da Célula/genética , Proteínas de Homeodomínio/fisiologia , Mastócitos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptor Notch1/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/imunologia , Animais , Animais Geneticamente Modificados , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Carboxipeptidases A/fisiologia , Diferenciação Celular/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mastócitos/metabolismo , Morfolinos/farmacologia , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
Br J Haematol ; 155(2): 167-81, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21810091

RESUMO

NUP98-HOXA9 [t(7;11) (p15;p15)] is associated with inferior prognosis in de novo and treatment-related acute myeloid leukaemia (AML) and contributes to blast crisis in chronic myeloid leukaemia (CML). We have engineered an inducible transgenic zebrafish harbouring human NUP98-HOXA9 under the zebrafish spi1(pu.1) promoter. NUP98-HOXA9 perturbed zebrafish embryonic haematopoiesis, with upregulated spi1 expression at the expense of gata1a. Markers associated with more differentiated myeloid cells, lcp1, lyz, and mpx were also elevated, but to a lesser extent than spi1, suggesting differentiation of early myeloid progenitors may be impaired by NUP98-HOXA9. Following irradiation, NUP98-HOXA9-expressing embryos showed increased numbers of cells in G2-M transition compared to controls and absence of a normal apoptotic response, which may result from an upregulation of bcl2. These data suggest NUP98-HOXA9-induced oncogenesis may result from a combination of defects in haematopoiesis and an aberrant response to DNA damage. Importantly, 23% of adult NUP98-HOXA9-transgenic fish developed a myeloproliferative neoplasm (MPN) at 19-23 months of age. In summary, we have identified an embryonic haematopoietic phenotype in a transgenic zebrafish line that subsequently develops MPN. This tool provides a unique opportunity for high-throughput in vivo chemical modifier screens to identify novel therapeutic agents in high risk AML.


Assuntos
Transformação Celular Neoplásica/genética , Proteínas de Homeodomínio/genética , Leucemia Experimental/genética , Células Mieloides/patologia , Transtornos Mieloproliferativos/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Animais , Animais Geneticamente Modificados , Apoptose , Ciclo Celular , Linhagem da Célula , Dano ao DNA , Fator de Transcrição GATA1/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Leucêmica da Expressão Gênica , Genes Reporter , Hematopoese/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Leucemia Experimental/patologia , Leucemia Induzida por Radiação/genética , Leucemia Induzida por Radiação/patologia , Células Mieloides/efeitos da radiação , Transtornos Mieloproliferativos/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/fisiologia , Proteínas de Fusão Oncogênica/fisiologia , Fenótipo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Proteínas Recombinantes de Fusão/fisiologia , Transativadores/genética , Transgenes , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA