Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 56(1): 35, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698213

RESUMO

Chagas disease, caused by the protozoa Trypanosoma cruzi, continues to be a serious public health problem in Latin America, worsened by the limitations in its detection. Given the importance of developing new diagnostic methods for this disease, the present review aimed to verify the number of publications dedicated to research on peptides that demonstrate their usefulness in serodiagnosis. To this end, a bibliographic survey was conducted on the PubMed platform using the keyword "peptide" or "epitope" combined with "Chagas disease" or "Trypanosoma cruzi"; "diagno*" or "serodiagnosis" or "immunodiagnosis", without period restriction. An increasing number of publications on studies employing peptides in ELISA and rapid tests assays was verified, which confirms the expansion of research in this field. It is possible to observe that many of the peptides tested so far originate from proteins widely used in the diagnosis of Chagas, and many of them are part of commercial tests developed. In this sense, as expected, promising results were obtained for several peptides when tested in ELISA, as many of them exhibited sensitivity and specificity values above 90%. Furthermore, some peptides have been tested in several studies, confirming their diagnostic potential. Despite the promising results observed, it is possible to emphasize the need for extensive testing of peptides, using different serological panels, in order to confirm their potential. The importance of producing an effective assay capable of detecting the clinical stages of the disease, as well as new immunogenic antigens that enable new serological diagnostic tools for Chagas disease, is evident.


Assuntos
Doença de Chagas , Ensaio de Imunoadsorção Enzimática , Peptídeos , Trypanosoma cruzi , Doença de Chagas/diagnóstico , Doença de Chagas/imunologia , Doença de Chagas/sangue , Humanos , Trypanosoma cruzi/imunologia , Peptídeos/imunologia , Peptídeos/química , Ensaio de Imunoadsorção Enzimática/métodos , Testes Imunológicos/métodos , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/sangue , Testes Sorológicos/métodos
2.
Microb Cell Fact ; 23(1): 145, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778337

RESUMO

Recombinant multiepitope proteins (RMPs) are a promising alternative for application in diagnostic tests and, given their wide application in the most diverse diseases, this review article aims to survey the use of these antigens for diagnosis, as well as discuss the main points surrounding these antigens. RMPs usually consisting of linear, immunodominant, and phylogenetically conserved epitopes, has been applied in the experimental diagnosis of various human and animal diseases, such as leishmaniasis, brucellosis, cysticercosis, Chagas disease, hepatitis, leptospirosis, leprosy, filariasis, schistosomiasis, dengue, and COVID-19. The synthetic genes for these epitopes are joined to code a single RMP, either with spacers or fused, with different biochemical properties. The epitopes' high density within the RMPs contributes to a high degree of sensitivity and specificity. The RMPs can also sidestep the need for multiple peptide synthesis or multiple recombinant proteins, reducing costs and enhancing the standardization conditions for immunoassays. Methods such as bioinformatics and circular dichroism have been widely applied in the development of new RMPs, helping to guide their construction and better understand their structure. Several RMPs have been expressed, mainly using the Escherichia coli expression system, highlighting the importance of these cells in the biotechnological field. In fact, technological advances in this area, offering a wide range of different strains to be used, make these cells the most widely used expression platform. RMPs have been experimentally used to diagnose a broad range of illnesses in the laboratory, suggesting they could also be useful for accurate diagnoses commercially. On this point, the RMP method offers a tempting substitute for the production of promising antigens used to assemble commercial diagnostic kits.


Assuntos
Epitopos , Escherichia coli , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Humanos , Epitopos/imunologia , Epitopos/genética , Testes Imunológicos/métodos , Animais , COVID-19/diagnóstico
3.
Int J Nanomedicine ; 7: 5271-82, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23055733

RESUMO

Nanosized maghemite particles were synthesized, precoated (with dimercaptosuccinic acid) and surface-functionalized with anticarcinoembryonic antigen (anti-CEA) and successfully used to target cell lines expressing the CEA, characteristic of colorectal cancer (CRC) cells. The as-developed nanosized material device, consisting of surface decorated maghemite nanoparticles suspended as a biocompatible magnetic fluid (MF) sample, labeled MF-anti-CEA, was characterized and tested against two cell lines: a high-CEA expressing cell line (LS174T) and a low-CEA expressing cell line (HCT116). Whereas X-ray diffraction was used to assess the average core size of the as-synthesized maghemite particles (average 8.3 nm in diameter), dynamic light scattering and electrophoretic mobility measurements were used to obtain the average hydrodynamic diameter (550 nm) and the zeta-potential (-38 mV) of the as-prepared and maghemite-based nanosized device, respectively. Additionally, surface-enhanced Raman spectroscopy (SERS) was used to track the surface decoration of the nanosized maghemite particles from the very first precoating up to the attachment of the anti-CEA moiety. The Raman peak at 1655 cm(-1), absent in the free anti-CEA spectrum, is the signature of the anti-CEA binding onto the precoated magnetic nanoparticles. Whereas MTT assay was used to confirm the low cell toxicity of the MF-anti-CEA device, ELISA and Prussian blue iron staining tests performed with both cell lines (LS174T and HCT116) confirm that the as-prepared MF-anti- CEA is highly specific for CEA-expressing cells. Finally, transmission electron microscopy analyses show that the association with anti-CEA seems to increase the number of LS174T cells with internalized maghemite nanoparticles, whereas no such increase seems to occur in the HCT116 cell line. In conclusion, the MF-anti-CEA sample is a biocompatible device that can specifically target CEA, suggesting its potential use as a theragnostic tool for CEA-expressing tumors, micrometastasis, and cancer-circulating cells.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Antígeno Carcinoembrionário/imunologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/uso terapêutico , Anticorpos Monoclonais/imunologia , Linhagem Celular Tumoral , Compostos Férricos/química , Humanos , Nanocápsulas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA