Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nat Med ; 29(12): 3111-3119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37946058

RESUMO

Over one million European children undergo computed tomography (CT) scans annually. Although moderate- to high-dose ionizing radiation exposure is an established risk factor for hematological malignancies, risks at CT examination dose levels remain uncertain. Here we followed up a multinational cohort (EPI-CT) of 948,174 individuals who underwent CT examinations before age 22 years in nine European countries. Radiation doses to the active bone marrow were estimated on the basis of body part scanned, patient characteristics, time period and inferred CT technical parameters. We found an association between cumulative dose and risk of all hematological malignancies, with an excess relative risk of 1.96 (95% confidence interval 1.10 to 3.12) per 100 mGy (790 cases). Similar estimates were obtained for lymphoid and myeloid malignancies. Results suggest that for every 10,000 children examined today (mean dose 8 mGy), 1-2 persons are expected to develop a hematological malignancy attributable to radiation exposure in the subsequent 12 years. Our results strengthen the body of evidence of increased cancer risk at low radiation doses and highlight the need for continued justification of pediatric CT examinations and optimization of doses.


Assuntos
Neoplasias Hematológicas , Neoplasias Induzidas por Radiação , Exposição à Radiação , Humanos , Criança , Adolescente , Adulto Jovem , Adulto , Doses de Radiação , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Hematológicas/epidemiologia , Neoplasias Hematológicas/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos
2.
Front Oncol ; 13: 1222800, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37795436

RESUMO

Background: In radiotherapy, especially when treating children, minimising exposure of healthy tissue can prevent the development of adverse outcomes, including second cancers. In this study we propose a validated Monte Carlo framework to evaluate the complete patient exposure during paediatric brain cancer treatment. Materials and methods: Organ doses were calculated for treatment of a diffuse midline glioma (50.4 Gy with 1.8 Gy per fraction) on a 5-year-old anthropomorphic phantom with 3D-conformal radiotherapy, intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and intensity modulated pencil beam scanning (PBS) proton therapy. Doses from computed tomography (CT) for planning and on-board imaging for positioning (kV-cone beam CT and X-ray imaging) accounted for the estimate of the exposure of the patient including imaging therapeutic dose. For dose calculations we used validated Monte Carlo-based tools (PRIMO, TOPAS, PENELOPE), while lifetime attributable risk (LAR) was estimated from dose-response relationships for cancer induction, proposed by Schneider et al. Results: Out-of-field organ dose equivalent data of proton therapy are lower, with doses between 0.6 mSv (testes) and 120 mSv (thyroid), when compared to photon therapy revealing the highest out-of-field doses for IMRT ranging between 43 mSv (testes) and 575 mSv (thyroid). Dose delivered by CT ranged between 0.01 mSv (testes) and 72 mSv (scapula) while a single imaging positioning ranged between 2 µSv (testes) and 1.3 mSv (thyroid) for CBCT and 0.03 µSv (testes) and 48 µSv (scapula) for X-ray. Adding imaging dose from CT and daily CBCT to the therapeutic demonstrated an important contribution of imaging to the overall radiation burden in the course of treatment, which is subsequently used to predict the LAR, for selected organs. Conclusion: The complete patient exposure during paediatric brain cancer treatment was estimated by combining the results from different Monte Carlo-based dosimetry tools, showing that proton therapy allows significant reduction of the out-of-field doses and secondary cancer risk in selected organs.

3.
Phys Med ; 107: 102543, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36780792

RESUMO

PURPOSE: To evaluate the effectiveness of currently available radioprotective (RP) devices in reducing the dose to interventional cardiology staff, especially to the eye lens and brain. METHODS: The performances of five RP devices (masks, caps, patient drapes, staff lead and lead-free aprons and Zero-Gravity (ZG) suspended radiation protection system) were assessed by means of Monte Carlo (MC) simulations. A geometry representative of an interventional cardiology setup was modelled and several configurations, including beam projections and staff distance from the source, were investigated. In addition, measurements on phantoms were performed for masks and drapes. RESULTS: An average dose reduction of 65% and 25% to the eyes and the brain respectively was obtained for the masks by MC simulations but a strong influence of the design was observed. The cap effectiveness for the brain ranges on average between 13% and 37%. Nevertheless, it was shown that only some upper parts of the brain were protected. There was no significant difference between the effectiveness of lead and lead-free aprons. Of all the devices, the ZG system offered the highest protection to the brain and eye lens and a protection level comparable to the apron for the organs normally covered. CONCLUSION: All investigated devices showed potential for dose reduction to specific organs. However, for masks, caps and drapes, it strongly depends on the design, exposure conditions and staff position. Therefore, for a clinical use, it is recommended to evaluate their effectiveness in the planned conditions of use.


Assuntos
Cardiologia , Cristalino , Exposição Ocupacional , Exposição à Radiação , Proteção Radiológica , Humanos , Proteção Radiológica/métodos , Radiometria/métodos , Doses de Radiação , Exposição à Radiação/prevenção & controle , Cardiologia/métodos , Exposição Ocupacional/prevenção & controle , Radiologia Intervencionista/métodos
4.
J Radiol Prot ; 43(1)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36720155

RESUMO

The International Commission on Radiation Units and Measurements (ICRU) proposed a new set of operational quantities for radiation protection for external radiation in its Report Committee 26 (ICRU95). The new proposal aims to improve the coherence between the operational quantities and the definitions of the protection quantities in the recommendations of the International Commission on Radiological Protection set out in 2007 (Ann. ICRP37). It is expected that this change in operational quantities will impact current dosimeter designs. Although for many photon energies, the conversion coefficients from physical field quantities to the new operational quantities will change relatively little, for radiation fields with low energy photon components, such as medical x-ray applications, there will be a significant decrease in the values of the conversion coefficients. This means that the numerical values of the new operational quantities will be much lower for the same radiation field. These values will be closer to the effective dose, but this change can still cause confusion for medical staff. It is important to examine the effect of the new set of dose conversion coefficients on the personal dose in realistic radiation fields. We performed a study to assess the effect of changing the definition of the operational quantity, personal dose equivalent (Hp), in realistic radiation fields in interventional radiology (IR) workplaces. The x-ray tube kilovoltage peak (kVp) in IR ranges between 60 and 120 kV. The medical staff is exposed to the scattered photons which have a wide range of energies depending on the beam configuration and the patient size. The objective of this study is to 'quantitatively' estimate the impact of implementing the new ICRU quantities of Report 95 in IR radiation fields using Monte Carlo simulations. Simulations of 560 different configurations in IR were performed using MCNPX to calculate fluence binned per energy and angle of incidence.HpandHp(10)were then calculated for each configuration using dose conversion coefficients from fluence given by ICRU Reports 95 and 57, respectively. The results show that the mean of the ratio,Hp(10)/Hp, is 1.6 for all simulated scenarios. This reduction will correct the current overestimation of the effective dose and should result in better compliance with the dose limits in IR. However, it may also have negative consequences on the safety culture among the medical staff. Special care will be needed when interpreting these lower doses.


Assuntos
Proteção Radiológica , Radiologia Intervencionista , Humanos , Doses de Radiação , Simulação por Computador , Proteção Radiológica/métodos , Fótons , Método de Monte Carlo , Radiometria/métodos
5.
Lancet Oncol ; 24(1): 45-53, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493793

RESUMO

BACKGROUND: The European EPI-CT study aims to quantify cancer risks from CT examinations of children and young adults. Here, we assess the risk of brain cancer. METHODS: We pooled data from nine European countries for this cohort study. Eligible participants had at least one CT examination before age 22 years documented between 1977 and 2014, had no previous diagnosis of cancer or benign brain tumour, and were alive and cancer-free at least 5 years after the first CT. Participants were identified through the Radiology Information System in 276 hospitals. Participants were linked with national or regional registries of cancer and vital status, and eligible cases were patients with brain cancers according to WHO International Classification of Diseases for Oncology. Gliomas were analysed separately to all brain cancers. Organ doses were reconstructed using historical machine settings and a large sample of CT images. Excess relative risks (ERRs) of brain cancer per 100 mGy of cumulative brain dose were calculated with linear dose-response modelling. The outcome was the first reported diagnosis of brain cancer after an exclusion period of 5 years after the first electronically recorded CT examination. FINDINGS: We identified 948 174 individuals, of whom 658 752 (69%) were eligible for our study. 368 721 (56%) of 658 752 participants were male and 290 031 (44%) were female. During a median follow-up of 5·6 years (IQR 2·4-10·1), 165 brain cancers occurred, including 121 (73%) gliomas. Mean cumulative brain dose, lagged by 5 years, was 47·4 mGy (SD 60·9) among all individuals and 76·0 mGy (100·1) among people with brain cancer. A significant linear dose-response relationship was observed for all brain cancers (ERR per 100 mGy 1·27 [95% CI 0·51-2·69]) and for gliomas separately (ERR per 100 mGy 1·11 [0·36-2·59]). Results were robust when the start of follow-up was delayed beyond 5 years and when participants with possibly previously unreported cancers were excluded. INTERPRETATION: The observed significant dose-response relationship between CT-related radiation exposure and brain cancer in this large, multicentre study with individual dose evaluation emphasises careful justification of paediatric CTs and use of doses as low as reasonably possible. FUNDING: EU FP7; Belgian Cancer Registry; La Ligue contre le Cancer, L'Institut National du Cancer, France; Ministry of Health, Labour and Welfare of Japan; German Federal Ministry of Education and Research; Worldwide Cancer Research; Dutch Cancer Society; Research Council of Norway; Consejo de Seguridad Nuclear, Generalitat de Catalunya, Spain; US National Cancer Institute; UK National Institute for Health Research; Public Health England.


Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Induzidas por Radiação , Exposição à Radiação , Criança , Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Estudos de Coortes , Doses de Radiação , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/etiologia , Glioma/diagnóstico por imagem , Glioma/epidemiologia , Glioma/etiologia , Exposição à Radiação/efeitos adversos , Tomografia Computadorizada por Raios X/efeitos adversos , Tomografia Computadorizada por Raios X/métodos
6.
Front Oncol ; 12: 882506, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875147

RESUMO

Background: The out-of-the-field absorbed dose affects the probability of primary second radiation-induced cancers. This is particularly relevant in the case of pediatric treatments. There are currently no methods employed in the clinical routine for the computation of dose distributions from stray radiation in radiotherapy. To overcome this limitation in the framework of conventional teletherapy with photon beams, two computational tools have been developed-one based on an analytical approach and another depending on a fast Monte Carlo algorithm. The purpose of this work is to evaluate the accuracy of these approaches by comparison with experimental data obtained from anthropomorphic phantom irradiations. Materials and Methods: An anthropomorphic phantom representing a 5-year-old child (ATOM, CIRS) was irradiated considering a brain tumor using a Varian TrueBeam linac. Two treatments for the same planned target volume (PTV) were considered, namely, intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). In all cases, the irradiation was conducted with a 6-MV energy beam using the flattening filter for a prescribed dose of 3.6 Gy to the PTV. The phantom had natLiF : Mg, Cu, P (MCP-N) thermoluminescent dosimeters (TLDs) in its 180 holes. The uncertainty of the experimental data was around 20%, which was mostly attributed to the MCP-N energy dependence. To calculate the out-of-field dose, an analytical algorithm was implemented to be run from a Varian Eclipse TPS. This algorithm considers that all anatomical structures are filled with water, with the exception of the lungs which are made of air. The fast Monte Carlo code dose planning method was also used for computing the out-of-field dose. It was executed from the dose verification system PRIMO using a phase-space file containing 3x109 histories, reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1 ) on all voxels scoring more than 50% of the maximum dose. The standard statistical uncertainty of out-of-field voxels in the Monte Carlo simulation did not exceed 5%. For the Monte Carlo simulation the actual chemical composition of the materials used in ATOM, as provided by the manufacturer, was employed. Results: In the out-of-the-field region, the absorbed dose was on average four orders of magnitude lower than the dose at the PTV. For the two modalities employed, the discrepancy between the central values of the TLDs located in the out-of-the-field region and the corresponding positions in the analytic model were in general less than 40%. The discrepancy in the lung doses was more pronounced for IMRT. The same comparison between the experimental and the Monte Carlo data yielded differences which are, in general, smaller than 20%. It was observed that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT. Conclusions: The proposed computational methods for the routine calculation of the out-of-the-field dose produce results that are similar, in most cases, with the experimental data. It has been experimentally found that the VMAT irradiation produces the smallest out-of-the-field dose when compared to IMRT for a given PTV.

7.
J Radiol Prot ; 42(3)2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35654011

RESUMO

The lens of the eye can be damaged by ionising radiation, so individuals whose eyes are exposed to radiation during their work may need to protect their eyes from exposure. Lead glasses are widely available, but there are questions about their efficiency in providing eye protection. In this study, Monte Carlo simulations are used to assess the efficiency of lead glasses in protecting the sensitive volume of the eye lens. Two designs currently available for interventional cardiologists are a wraparound (WA) style and ones with flat frontal lenses with side shielding. These designs were considered together with four modifications that would impact upon their efficiency: changing the lead equivalent thickness, adding lead to the frames, elongating the frontal lenses, and adding a closing shield to the bottom rim. For the eye closest to the source, standard models of lead glasses only decrease the radiation reaching the most sensitive region of the eye lens by 22% or less. Varying the lead thickness between 0.4 mm and 0.75 mm had little influence on the protection provided in the simulation of clinical use, neither did adding lead to the frames. Improved shielding was obtained by elongating the frontal lens, which could reduce radiation reaching the eye lens by up to 76%. Glasses with lenses that had a rim at the base, extending towards the face of the user, also provided better shielding than current models, decreasing the dose by up to 80%. In conclusion, elongating the frontal lens of lead glasses, especially of the WA design, could provide a three-fold increase in shielding efficiency and this is still valid for lenses with 0.4 mm lead equivalence.


Assuntos
Cardiologistas , Cristalino , Exposição Ocupacional , Proteção Radiológica , Dispositivos de Proteção dos Olhos , Humanos , Exposição Ocupacional/prevenção & controle , Doses de Radiação , Radiologia Intervencionista
8.
Front Oncol ; 12: 882489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756661

RESUMO

Proton therapy enables to deliver highly conformed dose distributions owing to the characteristic Bragg peak and the finite range of protons. However, during proton therapy, secondary neutrons are created, which can travel long distances and deposit dose in out-of-field volumes. This out-of-field absorbed dose needs to be considered for radiation-induced secondary cancers, which are particularly relevant in the case of pediatric treatments. Unfortunately, no method exists in clinics for the computation of the out-of-field dose distributions in proton therapy. To help overcome this limitation, a computational tool has been developed based on the Monte Carlo code TOPAS. The purpose of this work is to evaluate the accuracy of this tool in comparison to experimental data obtained from an anthropomorphic phantom irradiation. An anthropomorphic phantom of a 5-year-old child (ATOM, CIRS) was irradiated for a brain tumor treatment in an IBA Proteus Plus facility using a pencil beam dedicated nozzle. The treatment consisted of three pencil beam scanning fields employing a lucite range shifter. Proton energies ranged from 100 to 165 MeV. A median dose of 50.4 Gy(RBE) with 1.8 Gy(RBE) per fraction was prescribed to the initial planning target volume (PTV), which was located in the cerebellum. Thermoluminescent detectors (TLDs), namely, Li-7-enriched LiF : Mg, Ti (MTS-7) type, were used to detect gamma radiation, which is produced by nuclear reactions, and secondary as well as recoil protons created out-of-field by secondary neutrons. Li-6-enriched LiF : Mg,Cu,P (MCP-6) was combined with Li-7-enriched MCP-7 to measure thermal neutrons. TLDs were calibrated in Co-60 and reported on absorbed dose in water per target dose (µGy/Gy) as well as thermal neutron dose equivalent per target dose (µSv/Gy). Additionally, bubble detectors for personal neutron dosimetry (BD-PND) were used for measuring neutrons (>50 keV), which were calibrated in a Cf-252 neutron beam to report on neutron dose equivalent dose data. The Monte Carlo code TOPAS (version 3.6) was run using a phase-space file containing 1010 histories reaching an average standard statistical uncertainty of less than 0.2% (coverage factor k = 1) on all voxels scoring more than 50% of the maximum dose. The primary beam was modeled following a Fermi-Eyges description of the spot envelope fitted to measurements. For the Monte Carlo simulation, the chemical composition of the tissues represented in ATOM was employed. The dose was tallied as dose-to-water, and data were normalized to the target dose (physical dose) to report on absorbed doses per target dose (mSv/Gy) or neutron dose equivalent per target dose (µSv/Gy), while also an estimate of the total organ dose was provided for a target dose of 50.4 Gy(RBE). Out-of-field doses showed absorbed doses that were 5 to 6 orders of magnitude lower than the target dose. The discrepancy between TLD data and the corresponding scored values in the Monte Carlo calculations involving proton and gamma contributions was on average 18%. The comparison between the neutron equivalent doses between the Monte Carlo simulation and the measured neutron doses was on average 8%. Organ dose calculations revealed the highest dose for the thyroid, which was 120 mSv, while other organ doses ranged from 18 mSv in the lungs to 0.6 mSv in the testes. The proposed computational method for routine calculation of the out-of-the-field dose in proton therapy produces results that are compatible with the experimental data and allow to calculate out-of-field organ doses during proton therapy.

9.
Int J Occup Med Environ Health ; 35(5): 549-560, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35446304

RESUMO

OBJECTIVES: The study aim was to analyse the influence of the lead free cap on doses received by interventional cardiologists. The impact of lead free cap on doses to the head were evaluated in number of studies. As different methods used to assess the attenuation properties of protective cap can lead to ambiguous results, a detailed study was performed. MATERIAL AND METHODS: The effectiveness of a lead free cap in reducing the doses to the skin was assessed in clinic by performing measurements with thermoluminescent dosimeters attached inside and outside the cap first during individual coronary angiography (CA) or CA/percutaneous transluminal coronary angioplasty (CA/PTCA) procedures and then cumulated during few procedures of the same type. In order to investigate the effect of the cap on reducing the doses to the brain additional measurements were performed with a male Alderson Rando and polymethyl methacrylate (PMMA) phantoms representing the physician and the patient, respectively for different projections. The brain dose per procedure, annual and cumulated during entire working practice were estimated for both cases working with and without the cap. RESULTS: The dose reduction factor (RF) for the skin (the quotient of doses outside and inside the cap) vary from 1.1 up to 4.0 in clinical conditions; on average 2.3-fold reduction is observed in the most exposed left temple. The RFs determined for the part of the head covered by the cap range from 1.4 to 1.8 while for the brain from 1.0 to 1.1 depending on the projection. The estimated annual brain dose for interventional cardiologist performing yearly 550 CA/PTCA procedures without any protective shields is 7.2 mGy and it is reduced with the lead free cap by an average factor of 1.1. CONCLUSIONS: The study results proved the considerable effectiveness of lead free cap to protect the skin but very limited to protect the brain. Int J Occup Med Environ Health. 2022;35(5):549-60.


Assuntos
Cardiologistas , Exposição Ocupacional , Angiografia Coronária , Hemodinâmica , Humanos , Masculino , Exposição Ocupacional/prevenção & controle , Polimetil Metacrilato , Doses de Radiação , Radiação Ionizante
10.
Catheter Cardiovasc Interv ; 98(5): E687-E694, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34347935

RESUMO

OBJECTIVES: To investigate a novel suspended radiation shield (ZG), in reducing operator radiation exposure during cardiology interventions. BACKGROUND: Radiation exposure to the operator remains an occupational health hazard in the cardiac catheterization laboratory. METHODS: An anthropomorphic mannequin simulating an operator was placed near a phantom, simulating a patient. To measure the operator dose reduction, thermoluminescent detectors (TLDs) were inserted into the head and into the eye bulbs of the mannequin, while electronic dosimeters were positioned on the temple and at the level of the thyroid. Measurements were performed without and with the ZG system in place. Physician exposure was subsequently prospectively measured on the torso, on the left eye and on upper arm using the same electronic dosimeters, during clinical procedures (coronary angiography (CA) and percutaneous coronary intervention (PCI)). The physicians dose reduction was assessed by comparing operator dose when using traditional radioprotection garments (Phase 0) versus using the ZG system (Phase 1). RESULTS: Dose reductions as measured on the mannequin ranged from 66% to the head, to 100% to the torso. No dose was detected at the level of the torso and thyroid with ZG. When comparing CA and PCI procedures between Phase 0 and Phase 1, a significant difference (p < 0.001) was found for the left eye and the left wrist. Dose reduction as measured during clinical procedures for left eye/upper arm were on average 78.9%/95.6% for CA and 83.0%/93.0% for PCI, respectively (p < 0.001 for both). CONCLUSIONS: The ZG systems has a great potential to significantly reduce operator dose through the creation of a nearly zero-radiation work environment.


Assuntos
Cardiologia , Exposição Ocupacional , Intervenção Coronária Percutânea , Exposição à Radiação , Proteção Radiológica , Angiografia Coronária/efeitos adversos , Humanos , Exposição Ocupacional/efeitos adversos , Intervenção Coronária Percutânea/efeitos adversos , Doses de Radiação , Exposição à Radiação/efeitos adversos , Exposição à Radiação/prevenção & controle , Radiografia Intervencionista/efeitos adversos , Fatores de Risco , Resultado do Tratamento
11.
Phys Med ; 86: 44-56, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34052671

RESUMO

The use of patient contact-shielding has become a topic of intensive scientific debate. While it has been common practice during the last decades, some studies have questioned the efficiency of using such shielding while others have highlighted the inconsistencies in its application. The objective of this work is to review current recommendations and legislative documents on the use of out-of-field shielding in X-ray imaging, including those from national authorities and from international and national organisations and professional bodies. The review, performed within the framework of the activities of EURADOS Working Group 12, covers available recommendations on use of contact shielding in adult, pregnant and paediatric patients in general radiography, fluoroscopy, computed tomography, mammography and dental radiology. It includes a comprehensive search of 83 documents from 32 countries and 6 international organisations over the last 39 years. In general, using shielding is recommended only under two conditions: if it does not compromise the diagnostic task and the performance of the procedure and/or if it reassures the patient and comforters that they are appropriately protected against potentially harmful effects of radiation. There are very few specific regulatory requirements to use shielding in a particular imaging modality, although they may consider use of shielding either as part of good radiological practice or as requirements for availability of protective or ancillary tools, without further specification of their use. There is a wide variety of positions among documents that recommend out-of-field shielding, those that do not recommend it and those that are not specific. Therefore, evidence-based consensus is still needed to ensure best and consistent practice.


Assuntos
Radiologia , Adulto , Criança , Fluoroscopia , Humanos , Radiografia , Tomografia Computadorizada por Raios X , Raios X
12.
Radiat Res ; 196(1): 74-99, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33914893

RESUMO

Within the European Epidemiological Study to Quantify Risks for Paediatric Computerized Tomography (EPI-CT study), a cohort was assembled comprising nearly one million children, adolescents and young adults who received over 1.4 million computed tomography (CT) examinations before 22 years of age in nine European countries from the late 1970s to 2014. Here we describe the methods used for, and the results of, organ dose estimations from CT scanning for the EPI-CT cohort members. Data on CT machine settings were obtained from national surveys, questionnaire data, and the Digital Imaging and Communications in Medicine (DICOM) headers of 437,249 individual CT scans. Exposure characteristics were reconstructed for patients within specific age groups who received scans of the same body region, based on categories of machines with common technology used over the time period in each of the 276 participating hospitals. A carefully designed method for assessing uncertainty combined with the National Cancer Institute Dosimetry System for CT (NCICT, a CT organ dose calculator), was employed to estimate absorbed dose to individual organs for each CT scan received. The two-dimensional Monte Carlo sampling method, which maintains a separation of shared and unshared error, allowed us to characterize uncertainty both on individual doses as well as for the entire cohort dose distribution. Provided here are summaries of estimated doses from CT imaging per scan and per examination, as well as the overall distribution of estimated doses in the cohort. Doses are provided for five selected tissues (active bone marrow, brain, eye lens, thyroid and female breasts), by body region (i.e., head, chest, abdomen/pelvis), patient age, and time period (1977-1990, 1991-2000, 2001-2014). Relatively high doses were received by the brain from head CTs in the early 1990s, with individual mean doses (mean of 200 simulated values) of up to 66 mGy per scan. Optimization strategies implemented since the late 1990s have resulted in an overall decrease in doses over time, especially at young ages. In chest CTs, active bone marrow doses dropped from over 15 mGy prior to 1991 to approximately 5 mGy per scan after 2001. Our findings illustrate patterns of age-specific doses and their temporal changes, and provide suitable dose estimates for radiation-induced risk estimation in epidemiological studies.


Assuntos
Doses de Radiação , Tomografia Computadorizada por Raios X , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Europa (Continente)/epidemiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Imagens de Fantasmas
13.
J Interv Cardiol ; 2021: 3146104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987314

RESUMO

BACKGROUND: The MAVIG X-ray protective drape (MXPD) has been shown to reduce operator radiation dose during percutaneous coronary interventions (PCI). Whether MXPDs are also effective in reducing operator radiation during chronic total occlusion (CTO) PCI, often with dual access, is unknown. METHODS: We performed a prospective, randomized-controlled study comparing operator radiation dose during CTO PCI (n = 60) with or without pelvic MXPDs. The primary outcomes were the difference in first operator radiation dose (µSv) and relative dose of the first operator (radiation dose normalized for dose area product) at the level of the chest in the two groups. The effectiveness of MXPD in CTO PCI was compared with non-CTO PCI using a patient-level pooled analysis with a previously published non-CTO PCI randomized study. RESULTS: The use of the MXPD was associated with a 37% reduction in operator dose (weighted median dose 26.0 (IQR 10.00-29.47) µSv in the drape group versus 41.8 (IQR 30.82-60.59) µSv in the no drape group; P < 0.001) and a 60% reduction in relative operator dose (median dose 3.5 (IQR 2.5-5.4) E/DAPx10-3 in the drape group versus 8.6 (IQR 4.2-12.5) E/DAPx10-3 in the no drape group; P=0.001). MXPD was equally effective in reducing operator dose in CTO PCI compared with non-CTO PCI (P value for interaction 0.963). CONCLUSIONS: The pelvic MAVIG X-ray protective drape significantly reduced CTO operator radiation dose. This trial is clinically registered with https://www.clinicaltrials.gov (unique identifier: NCT04285944).


Assuntos
Oclusão Coronária , Exposição Ocupacional , Intervenção Coronária Percutânea , Doença Crônica , Angiografia Coronária , Oclusão Coronária/cirurgia , Humanos , Exposição Ocupacional/efeitos adversos , Intervenção Coronária Percutânea/efeitos adversos , Estudos Prospectivos , Doses de Radiação , Fatores de Risco , Resultado do Tratamento , Raios X
14.
Circ Cardiovasc Interv ; 13(11): e009627, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33092401

RESUMO

BACKGROUND: Interventional cardiologists are occupationally exposed to high doses of ionizing radiation. The MAVIG X-ray protective drape (MXPD) is a commercially available light weight, lead-free shield placed over the pelvic area of patients to minimize operator radiation dose. The aim of this study was to examine the efficacy of the MXPD during routine cardiac catheterization, including percutaneous coronary interventions. METHODS: We performed a prospective, randomized controlled study comparing operator radiation dose during cardiac catheterization and percutaneous coronary intervention (n=632) with or without pelvic MXPD. We measured operator radiation dose at 4 sites: left eye, chest, left ring finger, and right ring finger. The primary outcomes were the difference in first operator radiation dose (µSv) and relative dose of the first operator (radiation dose normalized for dose area product) at the level of the chest in the 2 groups. RESULTS: The use of the MXPD was associated with a 50% reduction in operator radiation dose (median dose 30.5 [interquartile range, 23.0-39.7] µSv in no drape group versus 15.3 [interquartile range, 11.1-20.0] µSv in the drape group; P<0.001) and a 57% reduction in relative operator dose (P<0.001). The largest absolute reduction in dose was observed at the left finger (median left finger dose for the no drape group was 104.9 [75.7-137.4] µSv versus 41.9 [32.6-70.6] µSv in the drape group; P<0.001). CONCLUSIONS: The pelvic MXPD significantly reduces first operator radiation dose during routine cardiac catheterization and percutaneous coronary intervention. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT04285944.


Assuntos
Cateterismo Cardíaco , Cardiologistas , Exposição Ocupacional/prevenção & controle , Intervenção Coronária Percutânea , Doses de Radiação , Exposição à Radiação/prevenção & controle , Proteção Radiológica/instrumentação , Radiografia Intervencionista , Radiologistas , Campos Cirúrgicos , Idoso , Idoso de 80 Anos ou mais , Bélgica , Cateterismo Cardíaco/efeitos adversos , Desenho de Equipamento , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional , Intervenção Coronária Percutânea/efeitos adversos , Estudos Prospectivos , Dosímetros de Radiação , Exposição à Radiação/efeitos adversos , Monitoramento de Radiação/instrumentação , Radiografia Intervencionista/efeitos adversos , Medição de Risco , Fatores de Risco , Método Simples-Cego
15.
J Radiol Prot ; 40(4)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32668420

RESUMO

The HARMONIC project (Health Effects of Cardiac Fluoroscopy and Modern Radiotherapy in Paediatrics) is a European study aiming to improve our understanding of the long-term health risks from radiation exposures in childhood and early adulthood. Here, we present the study design for the cardiac fluoroscopy component of HARMONIC. A pooled cohort of approximately 100 000 patients who underwent cardiac fluoroscopy procedures in Belgium, France, Germany, Italy, Norway, Spain or the UK, while aged under 22 years, will be established from hospital records and/or insurance claims data. Doses to individual organs will be estimated from dose indicators recorded at the time of examination, using a lookup-table-based dosimetry system produced using Monte Carlo radiation transport simulations and anatomically realistic computational phantom models. Information on beam geometry and x-ray energy spectra will be obtained from a representative sample of radiation dose structured reports. Uncertainties in dose estimates will be modelled using 2D Monte Carlo methods. The cohort will be followed up using national registries and insurance records to determine vital status and cancer incidence. Information on organ transplantation (a major risk factor for cancer development in this patient group) and/or other conditions predisposing to cancer will be obtained from national or local registries and health insurance data, depending on country. The relationship between estimated radiation dose and cancer risk will be investigated using regression modelling. Results will improve information for patients and parents and aid clinicians in managing and implementing changes to reduce radiation risks without compromising medical benefits.


Assuntos
Neoplasias , Radiometria , Adulto , Idoso , Criança , Fluoroscopia/efeitos adversos , Humanos , Método de Monte Carlo , Neoplasias/radioterapia , Imagens de Fantasmas , Doses de Radiação , Radiometria/métodos , Fatores de Risco
16.
Sci Rep ; 9(1): 17598, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31772203

RESUMO

Implementation of in vivo high-resolution micro-computed tomography (µCT), a powerful tool for longitudinal analysis of murine lung disease models, is hampered by the lack of data on cumulative low-dose radiation effects on the investigated disease models. We aimed to measure radiation doses and effects of repeated µCT scans, to establish cumulative radiation levels and scan protocols without relevant toxicity. Lung metastasis, inflammation and fibrosis models and healthy mice were weekly scanned over one-month with µCT using high-resolution respiratory-gated 4D and expiration-weighted 3D protocols, comparing 5-times weekly scanned animals with controls. Radiation dose was measured by ionization chamber, optical fiberradioluminescence probe and thermoluminescent detectors in a mouse phantom. Dose effects were evaluated by in vivo µCT and bioluminescence imaging read-outs, gold standard endpoint evaluation and blood cell counts. Weekly exposure to 4D µCT, dose of 540-699 mGy/scan, did not alter lung metastatic load nor affected healthy mice. We found a disease-independent decrease in circulating blood platelets and lymphocytes after repeated 4D µCT. This effect was eliminated by optimizing a 3D protocol, reducing dose to 180-233 mGy/scan while maintaining equally high-quality images. We established µCT safety limits and protocols for weekly repeated whole-body acquisitions with proven safety for the overall health status, lung, disease process and host responses under investigation, including the radiosensitive blood cell compartment.


Assuntos
Microtomografia por Raio-X/métodos , Animais , Bleomicina/efeitos adversos , Células Sanguíneas/efeitos da radiação , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/secundário , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Feminino , Medições Luminescentes , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos DBA , Imagens de Fantasmas , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/diagnóstico por imagem , Doses de Radiação , Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/prevenção & controle , Tolerância a Radiação , Radiometria , Microtomografia por Raio-X/efeitos adversos
18.
Phys Med ; 46: 67-74, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29519411

RESUMO

PURPOSE: The feasibility of setting-up generic, hospital-independent dose alert levels to initiate vigilance on possible skin injuries in interventional procedures was studied for three high-dose procedures (chemoembolization (TACE) of the liver, neuro-embolization (NE) and percutaneous coronary intervention (PCI)) in 9 European countries. METHODS: Gafchromic® films and thermoluminescent dosimeters (TLD) were used to determine the Maximum Skin Dose (MSD). Correlation of the online dose indicators (fluoroscopy time, kerma- or dose-area product (KAP or DAP) and cumulative air kerma at interventional reference point (Ka,r)) with MSD was evaluated and used to establish the alert levels corresponding to a MSD of 2 Gy and 5 Gy. The uncertainties of alert levels in terms of DAP and Ka,r, and uncertainty of MSD were calculated. RESULTS: About 20-30% of all MSD values exceeded 2 Gy while only 2-6% exceeded 5 Gy. The correlations suggest that both DAP and Ka,r can be used as a dose indicator for alert levels (Pearson correlation coefficient p mostly >0.8), while fluoroscopy time is not suitable (p mostly <0.6). Generic alert levels based on DAP (Gy cm2) were suggested for MSD of both 2 Gy and 5 Gy (for 5 Gy: TACE 750, PCI 250 and NE 400). The suggested levels are close to the lowest values published in several other studies. The uncertainty of the MSD was estimated to be around 10-15% and of hospital-specific skin dose alert levels about 20-30% (with coverage factor k = 1). CONCLUSIONS: The generic alert levels are feasible for some cases but should be used with caution, only as the first approximation, while hospital-specific alert levels are preferred as the final approach.


Assuntos
Fluoroscopia/efeitos adversos , Pele/efeitos da radiação , Cirurgia Assistida por Computador , Estudos de Viabilidade , Humanos , Dosimetria Termoluminescente
19.
Radiat Prot Dosimetry ; 181(2): 120-128, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351645

RESUMO

Percutaneous coronary interventions (PCI) of coronary chronic total occlusions (CTO) increase the risk of high radiation exposure for both the patient and the cardiologist. This study evaluated the maximum dose to the patients' skin (MSD) and the exposure of the cardiologists during CTO-PCI. Moreover, the efficiency of radioprotective drapes to reduce cardiologist exposure was assessed. Patient dose was measured during 31 procedures; dose to the cardiologist's extremities were measured during 65 procedures, among which 31 were performed with radioprotective drapes. The MSD was high (median: 1254 mGy; max: 6528 mGy), and higher than 2 Gy for 33% of the patients. The dose to the cardiologists' extremities per procedure was also of concern (median: 25-465 µSv), particularly to the left eye (median: 68 µSv; max: 187 µSv). Radioprotective drapes reduced the exposure to physician's upper limbs and eyes; especially to the left side (from -28 to -49%).


Assuntos
Oclusão Coronária/cirurgia , Órgãos em Risco/efeitos da radiação , Intervenção Coronária Percutânea/métodos , Lesões por Radiação/prevenção & controle , Proteção Radiológica/métodos , Pele/efeitos da radiação , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Doses de Radiação , Exposição à Radiação/efeitos adversos , Lesões por Radiação/etiologia , Radiometria/métodos
20.
Phys Med Biol ; 61(11): 4168-82, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27192093

RESUMO

Many organ dose calculation tools for computed tomography (CT) scans rely on the assumptions: (1) organ doses estimated for one CT scanner can be converted into organ doses for another CT scanner using the ratio of the Computed Tomography Dose Index (CTDI) between two CT scanners; and (2) helical scans can be approximated as the summation of axial slices covering the same scan range. The current study aims to validate experimentally these two assumptions. We performed organ dose measurements in a 5 year-old physical anthropomorphic phantom for five different CT scanners from four manufacturers. Absorbed doses to 22 organs were measured using thermoluminescent dosimeters for head-to-torso scans. We then compared the measured organ doses with the values calculated from the National Cancer Institute dosimetry system for CT (NCICT) computer program, developed at the National Cancer Institute. Whereas the measured organ doses showed significant variability (coefficient of variation (CoV) up to 53% at 80 kV) across different scanner models, the CoV of organ doses normalised to CTDIvol substantially decreased (12% CoV on average at 80 kV). For most organs, the difference between measured and simulated organ doses was within ±20% except for the bone marrow, breasts and ovaries. The discrepancies were further explained by additional Monte Carlo calculations of organ doses using a voxel phantom developed from CT images of the physical phantom. The results demonstrate that organ doses calculated for one CT scanner can be used to assess organ doses from other CT scanners with 20% uncertainty (k = 1), for the scan settings considered in the study.


Assuntos
Algoritmos , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Dosimetria Termoluminescente/métodos , Tomografia Computadorizada por Raios X/métodos , Criança , Humanos , Imagens de Fantasmas , Dosimetria Termoluminescente/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA