Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 85: 95-107, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29635006

RESUMO

Bats are known to harbor many zoonotic viruses, some of which are pathogenic to other mammals while they seem to be harmless in bats. As the interferon (IFN) response represents the first line of defense against viral infections in mammals, it is hypothesized that activation of the IFN system is one of the mechanisms enabling bats to co-exist with viruses. We have previously reported induction of type I IFN in a cell line from the common vampire bat, Desmodus rotundus, upon polyinosinic:polycytidylic acid (poly(I:C)) stimulation. To deepen our knowledge on D. rotundus' IFN-I antiviral response, we molecularly characterized three interferon-stimulated genes (ISGs), OAS1, PKR and ADAR1, closely implicated in the IFN-I antiviral response, and tested their functionality in our cellular model. We first found that D. rotundus encoded two OAS1 paralogs, OAS1a and OAS1b, and that the functional domains of the four ISGs characterized were highly conserved with those of other mammals. Despite their significant transcription level in the absence of stimulation, the transcription of the four ISGs characterized was enhanced by poly(I:C). In addition, the transcription of OAS1a and OAS1b appears to be differentially regulated. These findings demonstrate an active ISG antiviral response in D. rotundus in which OAS1b may play an important role.


Assuntos
2',5'-Oligoadenilato Sintetase/genética , Adenosina Desaminase/genética , Antivirais/farmacologia , Quirópteros/genética , Interferons/farmacologia , eIF-2 Quinase/genética , Animais , Linhagem Celular , Poli I-C/genética , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Viroses/genética
2.
Dev Comp Immunol ; 81: 1-7, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29122634

RESUMO

Though the common vampire bat, Desmodus rotundus, is known as the main rabies virus reservoir in Latin America, no tools are available to investigate its antiviral innate immune system. To characterize the IFN-I pathway, we established an immortalized cell line from a D. rotundus fetal lung named FLuDero. Then we molecularly characterized some of the Toll-like receptors (TLR3, 7, 8 and 9), the three RIG-I-like receptor members, as well as IFNα1 and IFNß. Challenging the FLuDero cell line with poly (I:C) resulted in an up-regulation of both IFNα1 and IFNß and the induction of expression of the different pattern recognition receptors characterized. These findings provide evidence of the intact dsRNA recognition machinery and the IFN-I signaling pathway in our cellular model. Herein, we generated a sum of insightful specific molecular and cellular tools that will serve as a useful model to study virus-host interactions of the common vampire bat.


Assuntos
Quirópteros/imunologia , Proteína DEAD-box 58/genética , Pulmão/citologia , Vírus da Raiva/fisiologia , Receptores Toll-Like/genética , Animais , Linhagem Celular Transformada , Quirópteros/genética , Clonagem Molecular , Reservatórios de Doenças , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Interferon-alfa/metabolismo , Interferon beta/metabolismo , Pulmão/imunologia , Poli I-C/imunologia , RNA de Cadeia Dupla/imunologia , Transdução de Sinais
3.
J Virol ; 86(10): 5817-28, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22438548

RESUMO

Dendritic cells (DCs), especially plasmacytoid DCs (pDCs), produce large amounts of alpha/beta interferon (IFN-α/ß) upon infection with DNA or RNA viruses, which has impacts on the physiopathology of the viral infections and on the quality of the adaptive immunity. However, little is known about the IFN-α/ß production by DCs during infections by double-stranded RNA (dsRNA) viruses. We present here novel information about the production of IFN-α/ß induced by bluetongue virus (BTV), a vector-borne dsRNA Orbivirus of ruminants, in sheep primary DCs. We found that BTV induced IFN-α/ß in skin lymph and in blood in vivo. Although BTV replicated in a substantial fraction of the conventional DCs (cDCs) and pDCs in vitro, only pDCs responded to BTV by producing a significant amount of IFN-α/ß. BTV replication in pDCs was not mandatory for IFN-α/ß production since it was still induced by UV-inactivated BTV (UV-BTV). Other inflammatory cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-12p40, were also induced by UV-BTV in primary pDCs. The induction of IFN-α/ß required endo-/lysosomal acidification and maturation. However, despite being an RNA virus, UV-BTV did not signal through Toll-like receptor 7 (TLR7) for IFN-α/ß induction. In contrast, pathways involving the MyD88 adaptor and kinases dsRNA-activated protein kinase (PKR) and stress-activated protein kinase (SAPK)/Jun N-terminal protein kinase (JNK) were implicated. This work highlights the importance of pDCs for the production of innate immunity cytokines induced by a dsRNA virus, and it shows that a dsRNA virus can induce IFN-α/ß in pDCs via a novel TLR-independent and Myd88-dependent pathway. These findings have implications for the design of efficient vaccines against dsRNA viruses.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Fator 88 de Diferenciação Mieloide/imunologia , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia , Animais , Bluetongue/genética , Bluetongue/virologia , Vírus Bluetongue/genética , Vírus Bluetongue/fisiologia , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/virologia , Feminino , Imunidade Inata , Interferon Tipo I/genética , Glicoproteínas de Membrana , Fator 88 de Diferenciação Mieloide/genética , Receptores de Interleucina-1 , Ovinos/imunologia , Ovinos/virologia , Transdução de Sinais , Receptor 7 Toll-Like/genética , Receptor 8 Toll-Like/genética
4.
PLoS One ; 5(5): e10575, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20485506

RESUMO

Hepatitis C virus is a poor inducer of interferon (IFN), although its structured viral RNA can bind the RNA helicase RIG-I, and activate the IFN-induction pathway. Low IFN induction has been attributed to HCV NS3/4A protease-mediated cleavage of the mitochondria-adapter MAVS. Here, we have investigated the early events of IFN induction upon HCV infection, using the cell-cultured HCV JFH1 strain and the new HCV-permissive hepatoma-derived Huh7.25.CD81 cell subclone. These cells depend on ectopic expression of the RIG-I ubiquitinating enzyme TRIM25 to induce IFN through the RIG-I/MAVS pathway. We observed induction of IFN during the first 12 hrs of HCV infection, after which a decline occurred which was more abrupt at the protein than at the RNA level, revealing a novel HCV-mediated control of IFN induction at the level of translation. The cellular protein kinase PKR is an important regulator of translation, through the phosphorylation of its substrate the eIF2alpha initiation factor. A comparison of the expression of luciferase placed under the control of an eIF2alpha-dependent (IRES(EMCV)) or independent (IRES(HCV)) RNA showed a specific HCV-mediated inhibition of eIF2alpha-dependent translation. We demonstrated that HCV infection triggers the phosphorylation of both PKR and eIF2alpha at 12 and 15 hrs post-infection. PKR silencing, as well as treatment with PKR pharmacological inhibitors, restored IFN induction in JFH1-infected cells, at least until 18 hrs post-infection, at which time a decrease in IFN expression could be attributed to NS3/4A-mediated MAVS cleavage. Importantly, both PKR silencing and PKR inhibitors led to inhibition of HCV yields in cells that express functional RIG-I/MAVS. In conclusion, here we provide the first evidence that HCV uses PKR to restrain its ability to induce IFN through the RIG-I/MAVS pathway. This opens up new possibilities to assay PKR chemical inhibitors for their potential to boost innate immunity in HCV infection.


Assuntos
Hepacivirus/imunologia , Interferons/biossíntese , eIF-2 Quinase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Hepacivirus/efeitos dos fármacos , Hepatite C/imunologia , Hepatite C/virologia , Humanos , Cinética , Modelos Imunológicos , Fosforilação/efeitos dos fármacos , Biossíntese de Proteínas , Inibidores de Proteínas Quinases/farmacologia , Especificidade por Substrato/efeitos dos fármacos , Fatores de Tempo , Fatores de Transcrição/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/metabolismo , eIF-2 Quinase/antagonistas & inibidores
5.
J Biol Chem ; 284(33): 21797-21809, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19546225

RESUMO

The mitochondria-bound adapter MAVS participates in IFN induction by recruitment of downstream partners such as members of the TRAF family, leading to activation of NF-kappaB, and the IRF3 pathways. A yeast two-hybrid search for MAVS-interacting proteins yielded the Polo-box domain (PBD) of the mitotic Polo-like kinase PLK1. We showed that PBD associates with two different domains of MAVS in both dependent and independent phosphorylation events. The phosphodependent association requires the phosphopeptide binding ability of PBD. It takes place downstream of the proline-rich domain of MAVS, within an STP motif, characteristic of the binding of PLK1 to its targets, where the central Thr234 residue is phosphorylated. Its phosphoindependent association takes place at the C terminus of MAVS. PLK1 strongly inhibits the ability of MAVS to activate the IRF3 and NF-kappaB pathways and to induce IFN. Reciprocally, depletion of PLK1 can increase IFN induction in response to RIG-I/SeV or RIG-I/poly(I)-poly(C) treatments. This inhibition is dependent on the phosphoindependent association of PBD at the C terminus of MAVS where it disrupts the association of MAVS with its downstream partner TRAF3. IFN induction was strongly inhibited in cells arrested in G2/M by nocodazole, which provokes increased expression of endogenous PLK1. Interestingly, depletion of PLK1 from these nocodazole-treated cells could restore, at least partially, IFN induction. Altogether, these data demonstrate a new function for PLK1 as a regulator of IFN induction and provide the basis for the development of inhibitors preventing the PLK1/MAVS association to sustain innate immunity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Interferons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Modelos Biológicos , NF-kappa B/metabolismo , Nocodazol/farmacologia , Fosfopeptídeos/química , Fosforilação , Prolina/química , Estrutura Terciária de Proteína , Treonina/química , Técnicas do Sistema de Duplo-Híbrido , Quinase 1 Polo-Like
6.
Hepatology ; 44(6): 1635-47, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17133498

RESUMO

During a viral infection, binding of viral double-stranded RNAs (dsRNAs) to the cytosolic RNA helicase RIG-1 leads to recruitment of the mitochondria-associated Cardif protein, involved in activation of the IRF3-phosphorylating IKKepsilon/TBK1 kinases, interferon (IFN) induction, and development of the innate immune response. The hepatitis C virus (HCV) NS3/4A protease cleaves Cardif and abrogates both IKKepsilon/TBK1 activation and IFN induction. By using an HCV replicon model, we previously showed that ectopic overexpression of IKKepsilon can inhibit HCV expression. Here, analysis of the IKKepsilon transcriptome profile in these HCV replicon cells showed induction of several genes associated with the antiviral action of IFN. Interestingly, IKKepsilon still inhibits HCV expression in the presence of neutralizing antibodies to IFN receptors or in the presence of a dominant negative STAT1alpha mutant. This suggests that good IKKepsilon expression levels are important for rapid activation of the cellular antiviral response in HCV-infected cells, in addition to provoking IFN induction. To determine the physiological importance of IKKepsilon in HCV infection, we then analyzed its expression levels in liver biopsy specimens from HCV-infected patients. This analysis also included genes of the IFN induction pathway (RIG-I, MDA5, LGP2, Cardif, TBK1), and three IKKepsilon-induced genes (IFN-beta, CCL3, and ISG15). The results show significant inhibition of expression of IKKepsilon and of the RNA helicases RIG-I/MDA5/LGP2 in the HCV-infected patients, whereas expression of TBK1 and Cardif was not significantly altered. In conclusion, given the antiviral potential of IKKepsilon and of the RNA helicases, these in vivo data strongly support an important role for these genes in the control of HCV infection.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/fisiopatologia , Quinase I-kappa B/biossíntese , Quinase I-kappa B/fisiologia , Interferons/biossíntese , Adulto , Idoso , Biópsia , Células Cultivadas , Proteína DEAD-box 58 , RNA Helicases DEAD-box/biossíntese , Regulação para Baixo , Feminino , Humanos , Helicase IFIH1 Induzida por Interferon , Fígado/fisiopatologia , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Imunológicos , Replicon/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA