Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408991

RESUMO

The adult gastric mucosa is characterised by deep invaginations of the epithelium called glands. These tissue architectural elements are maintained with the contribution of morphogen signals. Morphogens are expressed in specific areas of the tissue, and their diffusion generates gradients in the microenvironment. Cells at different positions in the gland sense a specific combination of signals that instruct them to differentiate, proliferate, regenerate, or migrate. Differentiated cells perform specific functions involved in digestion, such as the production of protective mucus and the secretion of digestive enzymes or gastric acid. Biopsies from gastric precancerous conditions usually display tissue aberrations and change the shape of the glands. Alteration of the morphogen signalling microenvironment is likely to underlie those conditions. Furthermore, genes involved in morphogen signalling pathways are found to be frequently mutated in gastric cancer. We summarise the most recent findings regarding alterations of morphogen signalling during gastric carcinogenesis, and we highlight the new stem cell technologies that are improving our understanding of the regulation of human tissue shape.


Assuntos
Gastrite Atrófica , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Adulto , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/patologia , Humanos , Neoplasias Gástricas/patologia , Microambiente Tumoral
2.
Gastroenterology ; 161(2): 623-636.e16, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33957136

RESUMO

BACKGROUND & AIMS: The homeostasis of the gastrointestinal epithelium relies on cell regeneration and differentiation into distinct lineages organized inside glands and crypts. Regeneration depends on Wnt/ß-catenin pathway activation, but to understand homeostasis and its dysregulation in disease, we need to identify the signaling microenvironment governing cell differentiation. By using gastric glands as a model, we have identified the signals inducing differentiation of surface mucus-, zymogen-, and gastric acid-producing cells. METHODS: We generated mucosoid cultures from the human stomach and exposed them to different growth factors to obtain cells with features of differentiated foveolar, chief, and parietal cells. We localized the source of the growth factors in the tissue of origin. RESULTS: We show that epidermal growth factor is the major fate determinant distinguishing the surface and inner part of human gastric glands. In combination with bone morphogenetic factor/Noggin signals, epidermal growth factor controls the differentiation of foveolar cells vs parietal or chief cells. We also show that epidermal growth factor is likely to underlie alteration of the gastric mucosa in the precancerous condition atrophic gastritis. CONCLUSIONS: Use of our recently established mucosoid cultures in combination with analysis of the tissue of origin provided a robust strategy to understand differentiation and patterning of human tissue and allowed us to draw a new, detailed map of the signaling microenvironment in the human gastric glands.


Assuntos
Padronização Corporal/efeitos dos fármacos , Proteína Morfogenética Óssea 4/farmacologia , Diferenciação Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Linhagem da Célula , Células Cultivadas , Microambiente Celular , Celulas Principais Gástricas/efeitos dos fármacos , Celulas Principais Gástricas/metabolismo , Celulas Principais Gástricas/ultraestrutura , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestrutura , Gastrite Atrófica/metabolismo , Gastrite Atrófica/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Organoides , Células Parietais Gástricas/efeitos dos fármacos , Células Parietais Gástricas/metabolismo , Células Parietais Gástricas/ultraestrutura , Via de Sinalização Wnt
3.
Artigo em Inglês | MEDLINE | ID: mdl-33975688

RESUMO

The lining of the stomach is a tight monolayer of epithelial cells performing functions in digestion and a protective barrier against gastric acid, toxic metabolites and infectious agents, including Helicobacter pylori. The response of the epithelial barrier to infections underlies gastric pathologies, including gastric cancer. H. pylori has the unique capacity to colonise the gastric mucosa while evading the immune system. The colonised mucosa initiates an inflammatory response to fight the infection and a strong regenerative program to avoid barrier failure and ulceration. This response changes the morphology and cell composition of the gastric epithelium and in parallel it might contribute to the accumulation of somatic mutations leading to cellular transformation. Genetically modified mice, cell lines and human-derived organoids are the main biological models to study the gastric epithelial barrier. With these models it is possible to dissect the stepwise process of tissue adaptation to infection that places the epithelium at risk of malignant transformation.


Assuntos
Transformação Celular Neoplásica/genética , Infecções por Helicobacter/fisiopatologia , Neoplasias Gástricas/genética , Animais , Gerbillinae , Humanos , Modelos Moleculares , Neoplasias Gástricas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA