Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8004): 646-655, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418879

RESUMO

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development.


Assuntos
Anticorpos Monoclonais , Antineoplásicos , Antígeno B7-H1 , Células Mieloides , Neoplasias , Receptores Imunológicos , Linfócitos T Reguladores , Animais , Humanos , Camundongos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Quimioterapia Combinada , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Ativação de Macrófagos , Células Mieloides/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptores de IgG/imunologia , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
2.
Nanomaterials (Basel) ; 8(5)2018 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-29883441

RESUMO

Molecular diagnostics have significantly advanced the early detection of diseases, where the electrochemical sensing of biomarkers (e.g., DNA, RNA, proteins) using multiple electrode arrays (MEAs) has shown considerable promise. Nanostructuring the electrode surface results in higher surface coverage of capture probes and more favorable orientation, as well as transport phenomena unique to nanoscale, ultimately leading to enhanced sensor performance. The central goal of this study is to investigate the influence of electrode nanostructure on electrically-guided immobilization of DNA probes for nucleic acid detection in a multiplexed format. To that end, we used nanoporous gold (np-Au) electrodes that reduced the limit of detection (LOD) for DNA targets by two orders of magnitude compared to their planar counterparts, where the LOD was further improved by an additional order of magnitude after reducing the electrode diameter. The reduced electrode diameter also made it possible to create a np-Au MEA encapsulated in a microfluidic channel. The electro-grafting reduced the necessary incubation time to immobilize DNA probes into the porous electrodes down to 10 min (25-fold reduction compared to passive immobilization) and allowed for grafting a different DNA probe sequence onto each electrode in the array. The resulting platform was successfully used for the multiplexed detection of three different biomarker genes relevant to breast cancer diagnosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA