Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Epigenetics ; 18(1): 2193936, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36972203

RESUMO

Ionizing radiation (IR) impact cellular and molecular processes that require chromatin remodelling relevant for cellular integrity. However, the cellular implications of ionizing radiation (IR) delivered per time unit (dose rate) are still debated. This study investigates whether the dose rate is relevant for inflicting changes to the epigenome, represented by chromatin accessibility, or whether it is the total dose that is decisive. CBA/CaOlaHsd mice were whole-body exposed to either chronic low dose rate (2.5 mGy/h for 54 d) or the higher dose rates (10 mGy/h for 14 d and 100 mGy/h for 30 h) of gamma radiation (60Co, total dose: 3 Gy). Chromatin accessibility was analysed in liver tissue samples using Assay for Transposase-Accessible Chromatin with high-throughput sequencing (ATAC-Seq), both one day after and over three months post-radiation (>100 d). The results show that the dose rate contributes to radiation-induced epigenomic changes in the liver at both sampling timepoints. Interestingly, chronic low dose rate exposure to a high total dose (3 Gy) did not inflict long-term changes to the epigenome. In contrast to the acute high dose rate given to the same total dose, reduced accessibility at transcriptional start sites (TSS) was identified in genes relevant for the DNA damage response and transcriptional activity. Our findings link dose rate to essential biological mechanisms that could be relevant for understanding long-term changes after ionizing radiation exposure. However, future studies are needed to comprehend the biological consequence of these findings.


Assuntos
Cromatina , Metilação de DNA , Animais , Camundongos , Cromatina/genética , Raios gama/efeitos adversos , Camundongos Endogâmicos CBA , Radiação Ionizante
2.
Artigo em Inglês | MEDLINE | ID: mdl-36669811

RESUMO

Several trials have attempted to identify sources of inter-laboratory variability in comet assay results, aiming at achieving more equal responses. Ionising radiation induces a defined level of DNA single-strand breaks (per dose/base pairs) and is used as a reference when comparing comet results but relies on accurately determined radiation doses. In this ring test we studied the significance of dose calibrations and comet assay protocol differences, with the object of identifying causes of variability and how to deal with them. Eight participating laboratories, using either x-ray or gamma radiation units, measured dose rates using alanine pellet dosimeters that were subsequently sent to a specialised laboratory for analysis. We found substantial deviations between calibrated and nominal (uncalibrated) dose rates, with up to 46% difference comparing highest and lowest values. Three additional dosimetry systems were employed in some laboratories: thermoluminescence detectors and two aqueous chemical dosimeters. Fricke's and Benzoic Acid dosimetry solutions gave reliable quantitative dose estimations using local equipment. Mononuclear cells from fresh human blood or mammalian cell lines were irradiated locally with calibrated (alanine) radiation doses and analysed for DNA damage using a standardised comet assay protocol and a lab-specific protocol. The dose response of eight laboratories, calculated against calibrated radiation doses, was linear with slope variance CV= 29% with the lab-specific protocol, reduced to CV= 16% with the standard protocol. Variation between laboratories indicate post-irradiation repair differences. Intra-laboratory variation was very low judging from the dose response of 8 donors (CV=4%). Electrophoresis conditions were different in the lab-specific protocols explaining some dose response variations which were reduced by systematic corrections for electrophoresis conditions. The study shows that comet assay data obtained in different laboratories can be compared quantitatively using calibrated radiation doses and that systematic corrections for electrophoresis conditions are useful.


Assuntos
Dano ao DNA , Radiação Ionizante , Animais , Humanos , Ensaio Cometa/métodos , Calibragem , Raios gama , Relação Dose-Resposta à Radiação , Mamíferos
3.
PLoS One ; 16(8): e0256667, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34428250

RESUMO

Adverse health outcomes of ionizing radiation given chronically at low dose rates are highly debated, a controversy also relevant for other stressors. Increased knowledge is needed for a more comprehensive understanding of the damaging potential of ionizing radiation from all dose rates and doses. There is a lack of relevant low dose rate data that is partly ascribed to the rarity of exposure facilities allowing chronic low dose rate exposures. Using the FIGARO facility, we assessed early (one day post-radiation) and late (recovery time of 100-200 days) hepatic genome-wide transcriptional profiles in male mice of two strains (CBA/CaOlaHsd and C57BL/6NHsd) exposed chronically to a low dose rate (2.5 mGy/h; 1200h, LDR), a mid-dose rate (10 mGy/h; 300h, MDR) and acutely to a high dose rate (100 mGy/h; 30h, HDR) of gamma irradiation, given to an equivalent total dose of 3 Gy. Dose-rate and strain-specific transcriptional responses were identified. Differently modulated transcriptional responses across all dose rate exposure groups were evident by the representation of functional biological pathways. Evidence of changed epigenetic regulation (global DNA methylation) was not detected. A period of recovery markedly reduced the number of differentially expressed genes. Using enrichment analysis to identify the functional significance of the modulated genes, perturbed signaling pathways associated with both cancer and non-cancer effects were observed, such as lipid metabolism and inflammation. These pathways were seen after chronic low dose rate and were not restricted to the acute high dose rate exposure. The transcriptional response induced by chronic low dose rate ionizing radiation suggests contribution to conditions such as cardiovascular diseases. We contribute with novel genome wide transcriptional data highlighting dose-rate-specific radiation responses and emphasize the importance of considering both dose rate, duration of exposure, and variability in susceptibility when assessing risks from ionizing radiation.


Assuntos
Raios gama , Radiação Ionizante , Transcrição Gênica/efeitos dos fármacos , Animais , Metilação de DNA/efeitos da radiação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Estresse Oxidativo/efeitos da radiação , Doses de Radiação
4.
Neurotox Res ; 33(4): 824-836, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29101721

RESUMO

Environmental stressors inducing oxidative stress such as ionizing radiation may influence cognitive function and neuronal plasticity. Recent studies have shown that transgenic mice deficient of DNA glycosylases display unexpected cognitive deficiencies related to changes in gene expression in the hippocampus. The main objectives of the present study were to determine learning and memory performance in C57BL/6NTac 8-oxoguanine DNA glycosylase 1 (Ogg1)+/- (heterozygote) and Ogg1+/+ (wild type, WT) mice, to study whether a single acute X-ray challenge (0.5 Gy, dose rate 0.457 Gy/min) influenced the cognitive performance in the Barnes maze, and if such differences were related to changes in gene expression levels in the hippocampus. We found that the Ogg1+/- mice exhibited poorer early-phase learning performance compared to the WT mice. Surprisingly, X-ray exposure of the Ogg1+/- animals improved their early-phase learning performance. No persistent effects on memory in the late-phase (6 weeks after irradiation) were observed. Our results further suggest that expression of 3 (Adrb1, Il1b, Prdx6) out of in total 35 genes investigated in the Ogg1+/- hippocampus is correlated to spatial learning in the Barnes maze.


Assuntos
Transtornos Cognitivos/genética , Transtornos Cognitivos/terapia , DNA Glicosilases/deficiência , Recuperação de Função Fisiológica/efeitos da radiação , Terapia por Raios X , Análise de Variância , Animais , DNA Glicosilases/genética , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Quinase 2 de Receptor Acoplado a Proteína G/genética , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Expressão Gênica/genética , Expressão Gênica/efeitos da radiação , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Masculino , Aprendizagem em Labirinto/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Peroxirredoxina VI/genética , Peroxirredoxina VI/metabolismo , RNA Mensageiro/metabolismo , Tempo de Reação/efeitos da radiação , Recuperação de Função Fisiológica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA