Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(9)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37754981

RESUMO

Mycotoxins are toxic fungal metabolites and are responsible for contaminating several foods. The intake of foods contaminated by these substances is related to hepatotoxicity and carcinogenic effects, possibly due to increasing oxidative stress. The current study evaluated Pitaya fruit juice's antioxidant effects on oxidative damage aflatoxin B1 (AFB1)-induced. Rats received 1.5 mL of Pitaya juice via gavage (for 30 days), and on the 31st day, they received AFB1 (250 µg/kg, via gavage). Forty-eight hours after the AFB1 dose, rats were euthanized for dosages of alanine transaminase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP); dosage of oxidative markers (thiobarbituric acid reactive species (TBARS), reactive species (RS)) and antioxidant defenses (catalase (CAT), superoxide dismutase (SOD), Glutathione S-transferase (GST) activities and Glutathione (GSH)) levels in the liver; and detection of Heat shock protein 70 (Hsp-70) and nuclear factor- erythroid 2-related factor 2 (Nrf2) immunocontent in the liver. Our results indicated that the Pitaya juice reduced ALP activity. Further, rats exposed to AFB1 experienced liver damage due to the increase in TBARS, RS, and Hsp-70 and the reduction in CAT, GSH, and Nrf2. Pitaya juice could, however, protect against these damages. Finally, these results indicated that pre-treatment with Pitaya juice was effective against the oxidative damage induced. However, other aspects may be elucidated in the future to discover more targets of its action against mycotoxicosis.

2.
J Comp Physiol B ; 193(5): 479-493, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37500966

RESUMO

This study investigated the potential effects of exercise on the responses of energy metabolism, redox balance maintenance, and apoptosis regulation in Drosophila melanogaster to shed more light on the mechanisms underlying the increased performance that this emerging exercise model provides. Three groups were evaluated for seven days: the control (no exercise or locomotor limitations), movement-limited flies (MLF) (no exercise, with locomotor limitations), and EXE (with exercise, no locomotor limitations). The EXE flies demonstrated greater endurance-like tolerance in the swimming test, associated with increased citrate synthase activity, lactate dehydrogenase activity and lactate levels, and metabolic markers in exercise. Notably, the EXE protocol regulated the Akt/p38 MAPK/Nrf2 pathway, which was associated with decreased Hsp70 activation, culminating in glutathione turnover regulation. Moreover, reducing the locomotion environment in the MLF group decreased endurance-like tolerance and did not alter citrate synthase activity, lactate dehydrogenase activity, or lactate levels. The MLF treatment promoted a pro-oxidant effect, altering the Akt/p38 MAPK/Nrf2 pathway and increasing Hsp70 levels, leading to a poorly-regulated glutathione system. Lastly, we demonstrated that exercise could modulate major metabolic responses in Drosophila melanogaster aerobic and anaerobic metabolism, associated with apoptosis and cellular redox balance maintenance in an emergent exercise model.


Assuntos
Drosophila melanogaster , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Citrato (si)-Sintase/metabolismo , Oxirredução , Glutationa/metabolismo , Lactato Desidrogenases/metabolismo , Lactatos
3.
Dev Biol ; 475: 80-90, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33741348

RESUMO

Iron (Fe) is used in various cellular functions, and a constant balance between its uptake, transport, storage, and use is necessary to maintain its homeostasis in the body. Changes in Fe metabolism with a consequent overload of this metal are related to neurological changes and cover a broad spectrum of diseases, mainly when these changes occur during the embryonic period. This work aimed to evaluate the effect of exposure to Fe overload during the embryonic period of Drosophila melanogaster. Progenitor flies (male and female) were exposed to ferrous sulfate (FeSO4) for ten days in concentrations of 0.5, 1, and 5 â€‹mM. After mating and oviposition, the progenitors were removed and the treatment bottles preserved, and the number of daily hatches and cumulative hatching of the first filial generation (F1) were counted. Subsequently, F1 flies (separated by sex) were subjected to behavioral tests such as negative geotaxis test, open field test, grooming, and aggression test. They have evaluated the levels of dopamine (DA), serotonin (5-HT), octopamine (OA), tryptophan and tyrosine hydroxylase (TH), acetylcholinesterase, reactive species, and the levels of Fe in the progenitor flies and F1. The Fe levels of F1 flies are directly proportional to what is incorporated during the period of embryonic development; we also observed a delay in hatching and a reduction in the number of the hatch of F1 flies exposed during the embryonic period to the 5mM Fe diet, a fact that may be related to the reduction of the cell viability of the ovarian tissue of progenitor flies. The flies exposed to Fe (1 and 5 â€‹mM) showed an increase in locomotor activity (hyperactivity) and a significantly higher number of repetitive movements. In addition to a high number of aggressive encounters when compared to control flies. We can also observe an increase in the levels of biogenic amines DA and 5-HT and an increase in TH activity in flies exposed to Fe (1 and 5 â€‹mM) compared to the control group. We conclude that the hyperactive-like behavior demonstrated in both sexes by F1 flies exposed to Fe may be associated with a dysregulation in the levels of DA and 5-HT since Fe is a cofactor of TH, which had its activity increased in this study. Therefore, more attention is needed during the embryonic development period for exposure to Fe overload.


Assuntos
Drosophila melanogaster/embriologia , Hipercinese/fisiopatologia , Sobrecarga de Ferro/embriologia , Animais , Comportamento Animal/fisiologia , Aminas Biogênicas/metabolismo , Aminas Biogênicas/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Expressão Gênica/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Hipercinese/etiologia , Ferro/metabolismo , Ferro/fisiologia , Ferro/toxicidade , Sobrecarga de Ferro/metabolismo , Sobrecarga de Ferro/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Exposição Materna , Atividade Motora/efeitos dos fármacos , Oxirredução , Exposição Paterna
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA