Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(2): e0291368, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306361

RESUMO

Glioblastoma multiforme (GBM) and the GBM variant gliosarcoma (GS) are among the tumors with the highest morbidity and mortality, providing only palliation. Stem-like glioma cells (SLGCs) are involved in tumor initiation, progression, therapy resistance, and relapse. The identification of general features of SLGCs could contribute to the development of more efficient therapies. Commercially available protein arrays were used to determine the cell surface signature of eight SLGC lines from GBMs, one SLGC line obtained from a xenotransplanted GBM-derived SLGC line, and three SLGC lines from GSs. By means of non-negative matrix factorization expression metaprofiles were calculated. Using the cophenetic correlation coefficient (CCC) five metaprofiles (MPs) were identified, which are characterized by specific combinations of 7-12 factors. Furthermore, the expression of several factors, that are associated with GBM prognosis, GBM subtypes, SLGC differentiation stages, or neural identity was evaluated. The investigation encompassed 24 distinct SLGC lines, four of which were derived from xenotransplanted SLGCs, and included the SLGC lines characterized by the metaprofiles. It turned out that all SLGC lines expressed the epidermal growth factor EGFR and EGFR ligands, often in the presence of additional receptor tyrosine kinases. Moreover, all SLGC lines displayed a neural signature and the IDH1 wildtype, but differed in their p53 and PTEN status. Pearson Correlation analysis identified a positive association between the pluripotency factor Sox2 and the expression of FABP7, Musashi, CD133, GFAP, but not with MGMT or Hif1α. Spherical growth, however, was positively correlated with high levels of Hif1α, CDK4, PTEN, and PDGFRß, whereas correlations with stemness factors or MGMT (MGMT expression and promoter methylation) were low or missing. Factors highly expressed by all SLGC lines, irrespective of their degree of stemness and growth behavior, are Cathepsin-D, CD99, EMMPRIN/CD147, Intß1, the Galectins 3 and 3b, and N-Cadherin.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Gliossarcoma , Humanos , Glioblastoma/metabolismo , Gliossarcoma/genética , Gliossarcoma/metabolismo , Gliossarcoma/patologia , Neoplasias Encefálicas/metabolismo , Recidiva Local de Neoplasia/patologia , Glioma/patologia , Células-Tronco Neoplásicas/metabolismo , Receptores ErbB/metabolismo , Linhagem Celular Tumoral
2.
Sci Signal ; 15(762): eabo7940, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445937

RESUMO

The lipid kinase VPS34 orchestrates autophagy, endocytosis, and metabolism and is implicated in cancer and metabolic disease. The proximal tubule in the kidney is a key metabolic organ that controls reabsorption of nutrients such as fatty acids, amino acids, sugars, and proteins. Here, by combining metabolomics, proteomics, and phosphoproteomics analyses with functional and superresolution imaging assays of mice with an inducible deficiency in proximal tubular cells, we revealed that VPS34 controlled the metabolome of the proximal tubule. In addition to inhibiting pinocytosis and autophagy, VPS34 depletion induced membrane exocytosis and reduced the abundance of the retromer complex necessary for proper membrane recycling and lipid retention, leading to a loss of fuel and biomass. Integration of omics data into a kidney cell metabolomic model demonstrated that VPS34 deficiency increased ß-oxidation, reduced gluconeogenesis, and enhanced the use of glutamine for energy consumption. Furthermore, the omics datasets revealed that VPS34 depletion triggered an antiviral response that included a decrease in the abundance of apically localized virus receptors such as ACE2. VPS34 inhibition abrogated SARS-CoV-2 infection in human kidney organoids and cultured proximal tubule cells in a glutamine-dependent manner. Thus, our results demonstrate that VPS34 adjusts endocytosis, nutrient transport, autophagy, and antiviral responses in proximal tubule cells in the kidney.


Assuntos
COVID-19 , Glutamina , Humanos , Animais , Camundongos , SARS-CoV-2 , Rim , Nutrientes , Antivirais , Lipídeos
3.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36077596

RESUMO

Acute kidney injury (AKI) is a common renal injury leading to relevant morbidity and mortality worldwide. Most of the clinical cases of AKI are caused by ischemia reperfusion (I/R) injury with renal ischemia injury followed by reperfusion injury and activation of the innate immune response converging to NF-ĸB pathway induction. Despite the clear role of NF-ĸB in inflammation, it has recently been acknowledged that NF-ĸB may impact other cell functions. To identify NF-ĸB function with respect to metabolism, vascular function and oxidative stress after I/R injury and to decipher in detail the underlying mechanism, we generated a transgenic mouse model with targeted deletion of IKKß along the tubule and applied I/R injury followed by its analysis after 2 and 14 days after I/R injury. Tubular IKKß deletion ameliorated renal function and reduced tissue damage. RNAseq data together with immunohistochemical, biochemical and morphometric analysis demonstrated an ameliorated vascular organization and mRNA expression profile for increased angiogenesis in mice with tubular IKKß deletion at 2 days after I/R injury. RNAseq and protein analysis indicate an ameliorated metabolism, oxidative species handling and timely-adapted cell proliferation and apoptosis as well as reduced fibrosis in mice with tubular IKKß deletion at 14 days after I/R injury. In conclusion, mice with tubular IKKß deletion upon I/R injury display improved renal function and reduced tissue damage and fibrosis in association with improved vascularization, metabolism, reactive species disposal and fine-tuned cell proliferation.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Animais , Apoptose/genética , Fibrose , Quinase I-kappa B/genética , Isquemia , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/metabolismo , Traumatismo por Reperfusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA