Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 236: 124003, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36907306

RESUMO

Insufficient hydrogen peroxide content in tumor cells, unsuitable pH and low efficiency of commonly used metal catalysts severely affect the efficiency of chemodynamic therapy, resulting in unsatisfactory efficacy of chemodynamic therapy alone. For this purpose, we designed a composite nanoplatform capable of targeting tumors and selectively degrading in the tumor microenvironment (TME) to address these issues. In this work, we synthesized Au@Co3O4 nanozyme inspired by crystal defect engineering. The addition of Au determines the formation of oxygen vacancies, accelerates electron transfer, and enhances redox activity, thus significantly enhancing the superoxide dismutase (SOD)-like and catalase (CAT)-like catalytic activities of the nanozyme. Subsequently, we camouflaged the nanozyme using a biomineralized CaCO3 shell to avoid damage to normal tissues by the nanozyme while effectively encapsulating the photosensitizer IR820, and finally the tumor targeting ability of the nanoplatform was enhanced by the modification of hyaluronic acid. Under near-infrared (NIR) light irradiation, the Au@Co3O4@CaCO3/IR820@HA nanoplatform not only visualizes the treatment with multimodal imaging, but also plays a photothermal sensitizing role through various strategies, while enhancing the enzyme catalytic activity, cobalt ion-mediated chemodynamic therapy (CDT) and IR820-mediated photodynamic therapy (PDT), and achieving the synergistic enhancement of reactive oxygen species (ROS) generation.


Assuntos
Neoplasias , Fotoquimioterapia , Humanos , Espécies Reativas de Oxigênio , Oxigênio , Ácido Hialurônico , Biomineralização , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Am J Transl Res ; 12(3): 743-757, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269709

RESUMO

An increased fracture risk is often observed in cancer patients undergoing radiotherapy (RT), particularly at sites within the field of radiation. Therefore, the development of appropriate therapeutic options to prevent RT-induced bone loss is urgently needed. A soluble form of the BMP receptor type 1A fusion protein (mBMPR1A-mFc) serves as an antagonist to endogenous BMPR1A. Previous studies have shown that mBMPR1A-mFc treatment increases bone mass in both ovary-intact and ovariectomized via promoting osteoblastic bone formation and inhibiting osteoclastic bone resorption. The present study was designed to investigate whether mBMPR1A-mFc administration prevents radiation-induced bone deterioration in mice. We constructed an animal model of radiation-induced osteoporosis by exposure to a 2-Gy dose of X-rays. Micro-CT, histomorphometric, bone-turnover, and mechanical analyses showed that mBMPR1A-mFc administration prevented trabecular microarchitecture deterioration after RT because of a marked increase in bone formation and a decrease in bone resorption. Mechanistic studies indicated that mBMPR1A-mFc administration promoted osteoblastogenesis by activating Wnt/Lrp5/ß-catenin signaling while decreasing osteoclastogenesis by inhibiting the RANKL/RANK/OPG pathway. Our novel findings provide solid evidence for the application of mBMPR1A-mFc as a therapeutic treatment for radiation-induced osteoporosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA