Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 428: 136797, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418879

RESUMO

Fresh-eating walnuts are perishable and become mildewed during shelf life, limiting their sales span. The effects of chlorine dioxide (ClO2) alone and its combination with walnut green husk extract (WGHE) on shelf stored fresh walnuts were investigated to develop a pollution-free preservative for the produce. The initial development of mildew incidence was delayed by both treatments under 25 °C, whereas, WGHE + ClO2 acted more effectively than ClO2 under 5 °C. The WGHE + ClO2 treatment presented superior effects on improving moisture, soluble sugar and total phenol content, alleviating loss of oil and unsaturated fatty acid and delaying peroxide value increase of walnut kernels at both temperatures. Both treatments inhibited the activities of three lipolytic enzymes and two oxidases at 25 °C and 5 °C, WGHE + ClO2 acted more effectively at 5 °C. The results guide the combined application of WGHE with ClO2 on shelf preservation of fresh walnut.


Assuntos
Juglans , Antioxidantes/farmacologia , Óxidos/farmacologia , Extratos Vegetais/farmacologia , Cloro
2.
Biochem Pharmacol ; 214: 115668, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37364623

RESUMO

Activins are a subgroup of the TGFß superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Folistatina , Ativinas/fisiologia , Receptores de Ativinas , Mamíferos
3.
Am J Physiol Gastrointest Liver Physiol ; 324(1): G38-G50, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283963

RESUMO

Pregnancy induces reprogramming of maternal physiology to support fetal development and growth. Maternal hepatocytes undergo hypertrophy and hyperplasia to drive maternal liver growth and alter their gene expression profiles simultaneously. This study aimed to further understand maternal hepatocyte adaptation to pregnancy. Timed pregnancies were generated in mice. In a nonpregnant state, most hepatocytes expressed Cd133, α-fetal protein (Afp) and epithelial cell adhesion molecule (Epcam) mRNAs, whereas overall, at the protein level, they exhibited a CD133-/AFP- phenotype; however, pericentral hepatocytes were EpCAM+. As pregnancy advanced, although most maternal hepatocytes retained Cd133, Afp, and Epcam mRNA expression, they generally displayed a phenotype of CD133+/AFP+, and EpCAM protein expression was switched from pericentral to periportal maternal hepatocytes. In addition, we found that the Hippo/yes-associated protein (YAP) pathway does not respond to pregnancy. Yap1 gene deletion specifically in maternal hepatocytes did not affect maternal liver growth or metabolic zonation. However, the absence of Yap1 gene eliminated CD133 protein expression without interfering with Cd133 transcript expression in maternal livers. We demonstrated that maternal hepatocytes acquire heterogeneous and dynamic developmental phenotypes, resembling fetal hepatocytes, partially via YAP1 through a posttranscriptional mechanism. Moreover, maternal liver is a new source of AFP. In addition, maternal liver grows and maintains its metabolic zonation independent of the Hippo/YAP1 pathway. Our findings revealed a novel and gestation-dependent phenotypic plasticity in adult hepatocytes.NEW & NOTEWORTHY We found that maternal hepatocytes exhibit developmental phenotypes in a temporal and spatial manner, similarly to fetal hepatocytes. They acquire this new property partially via yes-associated protein 1.


Assuntos
Proteínas de Sinalização YAP , alfa-Fetoproteínas , Gravidez , Feminino , Camundongos , Animais , Molécula de Adesão da Célula Epitelial/genética , alfa-Fetoproteínas/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição/metabolismo , Fenótipo
4.
Hepatol Commun ; 6(10): 2812-2826, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866567

RESUMO

The role of activin B, a transforming growth factor ß (TGFß) superfamily cytokine, in liver health and disease is largely unknown. We aimed to investigate whether activin B modulates liver fibrogenesis. Liver and serum activin B, along with its analog activin A, were analyzed in patients with liver fibrosis from different etiologies and in mouse acute and chronic liver injury models. Activin B, activin A, or both was immunologically neutralized in mice with progressive or established carbon tetrachloride (CCl4 )-induced liver fibrosis. Hepatic and circulating activin B was increased in human patients with liver fibrosis caused by several liver diseases. In mice, hepatic and circulating activin B exhibited persistent elevation following the onset of several types of liver injury, whereas activin A displayed transient increases. The results revealed a close correlation of activin B with liver injury regardless of etiology and species. Injured hepatocytes produced excessive activin B. Neutralizing activin B largely prevented, as well as improved, CCl4 -induced liver fibrosis, which was augmented by co-neutralizing activin A. Mechanistically, activin B mediated the activation of c-Jun-N-terminal kinase (JNK), the induction of inducible nitric oxide synthase (iNOS) expression, and the maintenance of poly (ADP-ribose) polymerase 1 (PARP1) expression in injured livers. Moreover, activin B directly induced a profibrotic expression profile in hepatic stellate cells (HSCs) and stimulated these cells to form a septa structure. Conclusions: We demonstrate that activin B, cooperating with activin A, mediates the activation or expression of JNK, iNOS, and PARP1 and the activation of HSCs, driving the initiation and progression of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Ribose , Ativinas , Difosfato de Adenosina/efeitos adversos , Animais , Tetracloreto de Carbono/toxicidade , Humanos , Cirrose Hepática/induzido quimicamente , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Ribose/efeitos adversos , Fator de Crescimento Transformador beta/efeitos adversos
5.
PLoS One ; 17(6): e0269383, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35696363

RESUMO

The transcription factor Nrf2 modulates the initiation and progression of a number of diseases including liver disorders. We evaluated whether Nrf2 mediates hepatic adaptive responses to cholestasis. Wild-type and Nrf2-null mice were subjected to bile duct ligation (BDL) or a sham operation. As cholestasis progressed to day 15 post-BDL, hepatocytes in the wild-type mice exhibited a tendency to dedifferentiate, indicated by the very weak expression of hepatic progenitor markers: CD133 and tumor necrosis factor-like weak induced apoptosis receptor (Fn14). During the same period, Nrf2 deficiency augmented this tendency, manifested by higher CD133 expression, earlier, stronger, and continuous induction of Fn14 expression, and markedly reduced albumin production. Remarkably, as cholestasis advanced to the late stage (40 days after BDL), hepatocytes in the wild-type mice exhibited a Fn14+ phenotype and strikingly upregulated the expression of deleted in malignant brain tumor 1 (DMBT1), a protein essential for epithelial differentiation during development. In contrast, at this stage, hepatocytes in the Nrf2-null mice entirely inhibited the upregulation of DMBT1 expression, displayed a strong CD133+/Fn14+ phenotype indicative of severe dedifferentiation, and persistently reduced albumin production. We revealed that Nrf2 maintains hepatocytes in the differentiated state potentially via the increased activity of the Nrf2/DMBT1 pathway during cholestasis.


Assuntos
Colestase Extra-Hepática , Colestase , Fator 2 Relacionado a NF-E2/metabolismo , Albuminas/metabolismo , Animais , Ductos Biliares/patologia , Diferenciação Celular , Colestase/metabolismo , Colestase Extra-Hepática/patologia , Hepatócitos/metabolismo , Ligadura , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Am J Physiol Gastrointest Liver Physiol ; 321(4): G389-G399, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431407

RESUMO

After partial hepatectomy (PH), the majority of remnant hepatocytes synchronously enter and rhythmically progress through the cell cycle for three major rounds to regain lost liver mass. Whether and how the circadian clock core component Bmal1 modulates this process remains elusive. We performed PH on Bmal1+/+ and hepatocyte-specific Bmal1 knockout (Bmal1hep-/-) mice and compared the initiation and progression of the hepatocyte cell cycle. After PH, Bmal1+/+ hepatocytes exhibited three major waves of nuclear DNA synthesis. In contrast, in Bmal1hep-/- hepatocytes, the first wave of nuclear DNA synthesis was delayed by 12 h, and the third such wave was lost. Following PH, Bmal1+/+ hepatocytes underwent three major waves of mitosis, whereas Bmal1hep-/- hepatocytes fully abolished mitotic oscillation. These Bmal1-dependent disruptions in the rhythmicity of hepatocyte cell cycle after PH were accompanied by suppressed expression peaks of a group of cell cycle components and regulators and dysregulated activation patterns of mitogenic signaling molecules c-Met and epidermal growth factor receptor. Moreover, Bmal1+/+ hepatocytes rhythmically accumulated fat as they expanded following PH, whereas this phenomenon was largely inhibited in Bmal1hep-/- hepatocytes. In addition, during late stages of liver regrowth, Bmal1 absence in hepatocytes caused the activation of redox sensor Nrf2, suggesting an oxidative stress state in regenerated liver tissue. Collectively, we demonstrated that during liver regeneration, Bmal1 partially modulates the oscillation of S-phase progression, fully controls the rhythmicity of M-phase advancement, and largely governs fluctuations in fat metabolism in replicating hepatocytes, as well as eventually determines the redox state of regenerated livers.NEW & NOTEWORTHY We demonstrated that Bmal1 centrally controls the synchronicity and rhythmicity of the cell cycle and lipid accumulation in replicating hepatocytes during liver regeneration. Bmal1 plays these roles, at least in part, by ensuring formation of the expression peaks of cell cycle components and regulators, as well as the timing and levels of activation of mitogenic signaling molecules.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Ciclo Celular , Proliferação de Células , Ritmo Circadiano , Hepatócitos/metabolismo , Regeneração Hepática , Fatores de Transcrição ARNTL/genética , Animais , Receptores ErbB/metabolismo , Hepatócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Mitose , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais
7.
Commun Biol ; 4(1): 671, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083720

RESUMO

Wolfberry Lycium, an economically important genus of the Solanaceae family, contains approximately 80 species and shows a fragmented distribution pattern among the Northern and Southern Hemispheres. Although several herbaceous species of Solanaceae have been subjected to genome sequencing, thus far, no genome sequences of woody representatives have been available. Here, we sequenced the genomes of 13 perennial woody species of Lycium, with a focus on Lycium barbarum. Integration with other genomes provides clear evidence supporting a whole-genome triplication (WGT) event shared by all hitherto sequenced solanaceous plants, which occurred shortly after the divergence of Solanaceae and Convolvulaceae. We identified new gene families and gene family expansions and contractions that first appeared in Solanaceae. Based on the identification of self-incompatibility related-gene families, we inferred that hybridization hotspots are enriched for genes that might be functioning in gametophytic self-incompatibility pathways in wolfberry. Extremely low expression of LOCULE NUBER (LC) and COLORLESS NON-RIPENING (CNR) orthologous genes during Lycium fruit development and ripening processes suggests functional diversification of these two genes between Lycium and tomato. The existence of additional flowering locus C-like MADS-box genes might correlate with the perennial flowering cycle of Lycium. Differential gene expression involved in the lignin biosynthetic pathway between Lycium and tomato likely illustrates woody and herbaceous differentiation. We also provide evidence that Lycium migrated from Africa into Asia, and subsequently from Asia into North America. Our results provide functional insights into Solanaceae origins, evolution and diversification.


Assuntos
Cromossomos de Plantas/genética , Genoma de Planta/genética , Lycium/genética , Solanaceae/genética , Sequenciamento Completo do Genoma/métodos , África , Ásia , Evolução Molecular , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Geografia , Lycium/classificação , Lycium/metabolismo , América do Norte , Filogenia , Poliploidia , Polissacarídeos/metabolismo , Solanaceae/classificação , Solanaceae/metabolismo , Especificidade da Espécie
8.
Front Plant Sci ; 11: 1256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922426

RESUMO

Lycium ruthenicum Murry. is a highly nutritional cash crop due to its fruit abundant anthocyanins. To understand the complex metabolic networks underlying the color formation in black and white fruits of L. ruthenicum, we conducted transcriptome and flavonoid metabolic profiling to identify the candidate genes possibly involved in flavonoid biosynthesis. As a result, 147 flavonoids were identified and there was almost no anthocyanin in white fruits, while luteolin, kaempferol, and quercetin derivatives showed markedly higher abundance. Furthermore, applying weighted gene co-expression network analyses, 3 MYB, 2 bHLH, 1WRKY and 1 NAC transcription factor, associated with anthocyanin biosynthesis were identified. A bHLH transcription factor, LrAN1b showed the greatest correlations with anthocyanin accumulation with no expression in white fruits. In addition, gene function analysis and qRT-PCR experiments identified a new activated anthocyanin MYB transcription factor designed as LrAN2-like. Yeast two-hybrid and transient tobacco overexpression experiments showed that LrAN1b could interact with LrAN2-like and LrAN11 to form MBW complex to activate the anthocyanin pathway. The yeast one-hybrid experiment indicated that LrAN2-like bonded anthocyanin structural gene LrDFR and LrANS promoters. Heterologous expression of LrAN1b in tobacco can significantly increase the anthocyanin content of tobacco florals and capsules, and activate anthocyanin synthesis related genes. Taken together, an anthocyanin regulatory network model in L. ruthenicum fruit was proposed firstly and we speculate that the white fruit phenotype was due to abnormal expression of LrAN1b. The findings provide new insight into the underlying mechanism of flavonoids, laying the foundation for future functional and molecular biological research in L. ruthenicum.

9.
Sci Rep ; 10(1): 14656, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887902

RESUMO

Goji (Lycium barbarum L.) is a highly medicinal value tree species. The yield and nutritional contents of goji fruit are significant affected by fertilizer level. In this study, we analyzed the yield and nutritional contents change of goji fruit, which planted in pot (vermiculite:perlite, 1:2, v:v) in growth chamber under P0 (32.5 g/per tree), P1 (65 g/per tree), and P2 (97.5 g/per tree). Meanwhile, we utilized an integrated Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) to analysis of the response of the metabolome in goji fruit to phosphorus level. The results show that the yield of goji fruits had strongly negative correlation with phosphorus level, especially in the third harvest time. The amino acids, flavonoids, polysaccharides, and betaine contents of goji fruits in the first harvest time had obvious correlated with the level of phosphorus level. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment results indicated that the impact of different phosphorus fertilizer levels on each group mainly involved the biosynthesis of flavonoids. The results provide new insights into the theoretical basis of the relationship between the nutritional contents of goji fruits and phosphorus fertilizer level.


Assuntos
Fertilizantes/análise , Frutas/química , Frutas/metabolismo , Lycium/química , Lycium/metabolismo , Metaboloma , Fósforo/metabolismo , Aminoácidos/metabolismo , Betaína/metabolismo , Cromatografia Líquida de Alta Pressão , Flavonoides/metabolismo , Metabolômica/métodos , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
12.
J Clin Invest ; 128(6): 2419-2435, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29558368

RESUMO

Autophagy is important for liver homeostasis, and the deficiency leads to injury, inflammation, ductular reaction (DR), fibrosis, and tumorigenesis. It is not clear how these events are mechanistically linked to autophagy deficiency. Here, we reveal the role of high-mobility group box 1 (HMGB1) in two of these processes. First, HMGB1 was required for DR, which represents the expansion of hepatic progenitor cells (HPCs) implicated in liver repair and regeneration. DR caused by hepatotoxic diets (3,5-diethoxycarbonyl-1,4-dihydrocollidine [DDC] or choline-deficient, ethionine-supplemented [CDE]) also depended on HMGB1, indicating that HMGB1 may be generally required for DR in various injury scenarios. Second, HMGB1 promoted tumor progression in autophagy-deficient livers. Receptor for advanced glycation end product (RAGE), a receptor for HMGB1, was required in the same two processes and could mediate the proliferative effects of HMBG1 in isolated HPCs. HMGB1 was released from autophagy-deficient hepatocytes independently of cellular injury but depended on NRF2 and the inflammasome, which was activated by NRF2. Pharmacological or genetic activation of NRF2 alone, without disabling autophagy or causing injury, was sufficient to cause inflammasome-dependent HMGB1 release. In conclusion, HMGB1 release is a critical mechanism in hepatic pathogenesis under autophagy-deficient conditions and leads to HPC expansion as well as tumor progression.


Assuntos
Autofagia , Carcinogênese , Proteína HMGB1/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco/metabolismo , Animais , Proliferação de Células , Proteína HMGB1/genética , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Transgênicos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/genética , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Células-Tronco/patologia
13.
Toxicol Sci ; 163(2): 397-408, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28204799

RESUMO

Epalrestat (EPS), an aldose reductase inhibitor, is widely prescribed to manage diabetic neuropathy. It is generally believed that EPS is beneficial to diabetic patients because it can protect endothelial cells, Schwann cells, or other neural cells from oxidative stress. However, several clinical studies revealed that EPS therapy led to liver dysfunction, which limited its clinical applications. Currently, the underlying mechanism by which EPS causes liver dysfunction is unknown. This study aimed to investigate the mechanism responsible for EPS-induced liver injury. In mouse liver, EPS 1) increased oxidative stress, indicated by increased expression of manganese superoxide dismutase, Ho-1, and Nqo1, 2) induced inflammation, indicated by infiltration of inflammatory cells, and induced expression of tumor necrosis factor-alpha, CD11b, and CD11c, as well as 3) predisposed to induce fibrosis, evidenced by increased mRNA and protein expression of early profibrotic biomarker genes procollagen I and alpha-smooth muscle actin, and by increased collagen deposition. In cultured mouse and human hepatoma cells, EPS treatment induced oxidative stress, decreased cell viability, and triggered apoptosis evidenced by increased Caspase-3 cleavage/activation. In addition, EPS increased mRNA and protein expression of cytoglobin in mouse liver, indicating that EPS activated hepatic stellate cells (HSCs). Furthermore, EPS treatment in cultured human HSCs increased cell viability. In summary, EPS administration induced oxidative stress and inflammation in mouse liver, and stimulated liver fibrogenesis. Therefore, cautions should be exercised during EPS therapy.


Assuntos
Cirrose Hepática Experimental/induzido quimicamente , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Rodanina/análogos & derivados , Tiazolidinas/toxicidade , Actinas/genética , Animais , Antígenos CD11/genética , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colágeno Tipo I/genética , Humanos , Inflamação , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática Experimental/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Rodanina/toxicidade , Fator de Necrose Tumoral alfa/genética
14.
J Pharmacol Exp Ther ; 358(1): 14-21, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189962

RESUMO

Transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates multiple biologic processes, including hepatic lipid metabolism. Estrogen exerts actions affecting energy homeostasis, including a liver fat-lowering effect. Increasing evidence indicates the crosstalk between these two molecules. The aim of this study was to evaluate whether Nrf2 modulates estrogen signaling in hepatic lipid metabolism. Nonalcoholic fatty liver disease (NAFLD) was induced in wild-type and Nrf2-null mice fed a high-fat diet and the liver fat-lowering effect of exogenous estrogen was subsequently assessed. We found that exogenous estrogen eliminated 49% and 90% of hepatic triglycerides in wild-type and Nrf2-null mice with NAFLD, respectively. This observation demonstrates that Nrf2 signaling is antagonistic to estrogen signaling in hepatic fat metabolism; thus, Nrf2 absence results in striking amplification of the liver fat-lowering effect of estrogen. In addition, we found the association of trefoil factor 3 and fatty acid binding protein 5 with the liver fat-lowering effect of estrogen. In summary, we identified Nrf2 as a novel and potent inhibitor of estrogen signaling in hepatic lipid metabolism. Our finding may provide a potential strategy to treat NAFLD by dually targeting Nrf2 and estrogen signaling.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/deficiência , Proteínas de Neoplasias/metabolismo , Animais , Western Blotting , Dieta Hiperlipídica , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Reação em Cadeia da Polimerase em Tempo Real
15.
DNA Cell Biol ; 33(2): 73-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24303950

RESUMO

ERGIC2 (formerly known as PTX1) is a gene identified by subtractive hybridization on the basis that it is expressed in normal human prostate, but not in prostate carcinoma. It is unrelated to the gene encoding pituitary homeobox protein (Ptx1 or Pitx1), which regulates pituitary hormone gene expression. Based on sequence homology with the yeast Erv41 protein, it is suggested that the ERGIC2 protein is an endoplasmic reticulum (ER) resident protein involved in protein trafficking between the ER and Golgi intermediate compartment (ERGIC) and cis-Golgi. However, studies from our laboratory and others have shown that it may have other functions. In this study, we have identified a variant ERGIC2 transcript with a four base deletion at the junction of exons 8-9, resulting in frame shift after codon #189. As a result, a truncated protein of 215 residues (24.5 kDa) is predicted as compared with the 377-residue (42.6 kDa) wild-type (WT) protein. The truncated variant ERGIC2 protein loses 45% of the luminal domain and the transmembrane domain near the C-terminus, and this effectively abrogates its function as the ERGIC-Golgi protein transport shuttle. The variant, like the WT protein, was found to upregulate the heme oxygenase 1 gene, suggesting that it may be involved in the oxidative stress pathway.


Assuntos
Regulação Enzimológica da Expressão Gênica/genética , Heme Oxigenase-1/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Western Blotting , Linhagem Celular Tumoral , Clonagem Molecular , Retículo Endoplasmático/metabolismo , Mutação da Fase de Leitura , Humanos , Plasmídeos/genética , Transporte Proteico/genética , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência
16.
J Cell Sci ; 126(Pt 7): 1618-25, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23418358

RESUMO

Pregnancy induces widespread adaptive responses in maternal organ systems including the liver. The maternal liver exhibits significant growth by increasing the number and size of hepatocytes, by largely unknown mechanisms. Nrf2 mediates cellular defense against oxidative stress and inflammation and also regulates liver regeneration. To determine whether Nrf2 is involved in the regulation of maternal hepatic adaptations to pregnancy, we assessed the proliferation and size of maternal hepatocytes and the associated molecular events in wild-type and Nrf2-null mice at various stages of gestation. We found that wild-type maternal hepatocytes underwent proliferation and size reduction during the first half, and size increase without overt replication during the second half, of pregnancy. Although pregnancy decreased Nrf2 activity in the maternal liver, Nrf2 deficiency caused a delay in maternal hepatocyte proliferation, concomitant with dysregulation of the activation of Cyclin D1, E1, and, more significantly, A2. Remarkably, as a result of Nrf2 absence, the maternal hepatocytes were largely prevented from reducing their sizes during the first half of pregnancy, which was associated with an increase in mTOR activation. During the second half of pregnancy, maternal hepatocytes of both genotypes showed continuous volume increase accompanied by persistent activation of mTOR. However, the lack of Nrf2 resulted in dysregulation of the activation of the mTOR upstream regulator AKT1 and the mTOR target p70SK6 and thus disruption of the AKT1/mTOR/p70S6K pathway, which is known to control cell size. This suggests an mTOR-dependent and AKT1- and p70S6K-independent compensatory mechanism when Nrf2 is deficient. In summary, our study demonstrates that Nrf2 is required for normal maternal hepatic adjustments to pregnancy by ensuring proper regulation of the number and size of maternal hepatocytes.


Assuntos
Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Western Blotting , Ciclina A2/metabolismo , Ciclina D1/metabolismo , Ciclina E/metabolismo , Feminino , Hepatócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Proteínas Oncogênicas/metabolismo , Gravidez
17.
Hepatol Res ; 43(8): 876-89, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23279269

RESUMO

AIM: Partial hepatectomy (PH) induces robust hepatic regenerative and metabolic responses that are considered to be triggered by humoral factors. The aim of the study was to identify plasma protein factors that potentially trigger or reflect the body's immediate-early responses to liver mass reduction. METHODS: Male C57BL/6 mice were subjected to sham operation, 70% PH or 90% PH. Blood was collected from the inferior vena cava at 20, 60 and 180 min after surgery. RESULTS: Using a label-free quantitative mass spectrometry-based proteomics approach, we identified 399 proteins exhibiting significant changes in plasma expression between any two groups. Of the 399 proteins, 167 proteins had multiple unique sequences and high peptide ID confidence (>90%) and were defined as priority 1 proteins. A group of plasma proteins largely associated with metabolism is enriched after 70% PH. Among the plasma proteins that respond to 90% PH are a dominant group of proteins that are also associated with metabolism and one known cytokine (platelet factor 4). Ninety percent PH and 70% PH induces similar changes in plasma protein profile. CONCLUSION: Our findings enable us to gain insight into the immediate-early response of plasma proteins to liver mass loss. Our data support the notion that increased metabolic demands of the body after massive liver mass loss may function as a sensor that calibrates hepatic regenerative response.

18.
Exp Biol Med (Maywood) ; 236(11): 1322-32, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21969712

RESUMO

Pregnancy is characterized by physiological adjustments in the maternal compartment. In this investigation, the influence of pregnancy on maternal liver was examined in CD-1 mice. Dramatic changes were observed in the size of the maternal liver during pregnancy. Livers doubled in weight from the non-pregnant state to day 18 of pregnancy. The pregnancy-induced hepatomegaly was a physiological event of liver growth confirmed by DNA content increase and detection of hepatocyte hyperplasia and hypertrophy. Growth of the liver was initiated following implantation and peaked at parturition. The expression and/or activities of key genes known to regulate liver regeneration, a phenomenon of liver growth compensatory to liver mass loss, were investigated. The results showed that pregnancy-dependent liver growth was associated with interleukin (IL)-6, tumor necrosis factor α, c-Jun and IL-1ß, but independent of hepatocyte growth factor, fibroblast growth factor 1, tumor necrosis factor receptor 1, constitutive androstane receptor and pregnane X receptor. Furthermore, maternal liver growth was associated with the activation of hepatic signal transducer and activator of transcription 3, ß-catenin and epidermal growth factor receptor, but pregnancy did not activate hepatic c-Met. The findings suggest that the molecular mechanisms regulating pregnancy-induced liver growth and injury-induced liver regeneration exhibit overlapping features but are not identical. In summary, the liver of the mouse adapts to the demands of pregnancy via a dramatic growth response driven by hepatocyte proliferation and size increase.


Assuntos
Fígado/anatomia & histologia , Prenhez/fisiologia , Animais , Receptor Constitutivo de Androstano , Implantação do Embrião/fisiologia , Receptores ErbB/metabolismo , Feminino , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Fígado/crescimento & desenvolvimento , Camundongos , Parto/fisiologia , Gravidez , Receptor de Pregnano X , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Esteroides/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , beta Catenina/metabolismo
19.
Liver Int ; 30(3): 406-15, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20040050

RESUMO

BACKGROUND: Maternal metabolic demands change dramatically during the course of gestation and must be co-ordinated with the needs of the developing placenta and fetus. The liver is critically involved in metabolism and other important functions. However, maternal hepatic adjustments to pregnancy are poorly understood. AIM: The aim of the study was to evaluate the influences of pregnancy on the maternal liver growth and gene expression profile. METHODS: Holtzman Sprague-Dawley rats were mated and sacrificed at various stages of gestation and post-partum. The maternal livers were analysed in gravimetric response, DNA content by PicoGreen dsDNA quantitation reagent, hepatocyte ploidy by flow cytometry and hepatocyte proliferation by ki-67 immunostaining. Gene expression profiling of non-pregnant and gestation d18.5 maternal hepatic tissue was analysed using a DNA microarray approach and partially verified by northern blot or quantitative real-time PCR analysis. RESULTS: During pregnancy, the liver exhibited approximately an 80% increase in size, proportional to the increase in body weight of the pregnant animals. The pregnancy-induced hepatomegaly was a physiological event of liver growth manifested by increases in maternal hepatic DNA content and hepatocyte proliferation. Pregnancy did not affect hepatocyte polyploidization. Pregnancy-dependent changes in hepatic expression were noted for a number of genes, including those associated with cell proliferation, cytokine signalling, liver regeneration and metabolism. CONCLUSIONS: The metabolic demands of pregnancy cause marked adjustments in maternal liver physiology. Central to these adjustments are an expansion in hepatic capacity and changes in hepatic gene expression. Our findings provide insights into pregnancy-dependent hepatic adaptations.


Assuntos
Adaptação Fisiológica , Perfilação da Expressão Gênica , Fígado/fisiologia , Gravidez/genética , Animais , Northern Blotting , Proliferação de Células , DNA/metabolismo , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Antígeno Ki-67/metabolismo , Fígado/anatomia & histologia , Fígado/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Gravidez/fisiologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa
20.
Toxicol Sci ; 92(1): 51-60, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16632523

RESUMO

Steroid and xenobiotic receptor (SXR) or human pregnane X receptor (hPXR) dimerizes with retinoid X receptor (RXR) and regulates the transcription of genes encoding xenobiotic-metabolizing enzymes such as CYP3A4. Rifampin, the classical activator of CYP3A4, binds to SXR directly. It is unclear whether various natural and synthetic retinoids can regulate the expression of CYP3A4. To evaluate the effects of retinoids on the RXR/SXR-mediated pathway, transient transfection assays were performed on both CV-1 and human hepatoma Huh7 cells using a reporter construct containing multiple RXR/SXR consensus binding elements (an everted repeat with a 6-nucleotide spacer, ER-6). The results revealed that eight out of 13 retinoids screened significantly induced the RXR/SXR-mediated pathway in Huh7 cells. At an equal molar concentration, the acid forms (9-cis-RA, 13-cis-RA, and all-trans-RA) or aldehyde, the direct precursor of acid (9-cis-retinal and 13-cis-retinal), exhibited a greater or similar potency than rifampin. Depending on the ligands, RXR may serve as a silent or an active partner of SXR. Additionally, retinoids can increase CYP3A4 enzyme activity in Huh7 cells. To further evaluate the potential drug-drug interactions, which may be caused by retinoids, Huh7 cells were pretreated with 9-cis-RA and followed by acetaminophen. We showed that 9-cis-RA enhanced the covalent binding of N-acetyl-p-quinoneimine, a toxic intermediate of acetaminophen produced by phase I enzymes oxidation. This result suggested that drug-drug interaction might occur between 9-cis-RA and acetaminophen in human liver cells. Taken together, retinoids activate the RXR/SXR-mediated pathway and regulate the expression of CYP3A4. Thus, retinoids potentially can cause drug-drug interactions when they are administered with other CYP3A4 substrates.


Assuntos
Sistema Enzimático do Citocromo P-450/biossíntese , Receptores de Esteroides/efeitos dos fármacos , Receptores X de Retinoides/efeitos dos fármacos , Retinoides/farmacologia , Northern Blotting , Linhagem Celular Tumoral , Citocromo P-450 CYP3A , Relação Dose-Resposta a Droga , Indução Enzimática , Humanos , Receptor de Pregnano X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA