Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Mol Oncol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419282

RESUMO

Casein kinase 1ε (CK1ε) and axis inhibitor 1 (AXIN1) are crucial components of the ß-catenin destruction complex in canonical Wnt signaling. CK1ε has been shown to interact with AXIN1, but its physiological function and role in tumorigenesis remain unknown. In this study, we found that CK1δ/ε inhibitors significantly enhanced AXIN1 protein level in colorectal cancer (CRC) cells through targeting CK1ε. Mechanistically, CK1ε promoted AXIN1 degradation by the ubiquitin-proteasome pathway by promoting the interaction of E3 ubiquitin-protein ligase SIAH1 with AXIN1. Genetic or pharmacological inhibition of CK1ε and knockdown of SIAH1 downregulated the expression of Wnt/ß-catenin-dependent genes, suppressed the viability of CRC cells, and restrained tumorigenesis and progression of CRC in vitro and in vivo. In summary, our results demonstrate that CK1ε exerted its oncogenic role in CRC occurrence and progression by regulating the stability of AXIN1. These findings reveal a novel mechanism by which CK1ε regulates the Wnt/ß-catenin signaling pathway and highlight the therapeutic potential of targeting the CK1ε/SIAH1 axis in CRC.

2.
Food Funct ; 14(22): 10014-10030, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37840453

RESUMO

This study investigated the potential benefits of black chokeberry polyphenol (BCP) supplementation on lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 cells and obesity-induced colonic inflammation in a high fat diet (HFD)-fed rat model. Our findings demonstrated that BCP treatment effectively reduced the production of nitric oxide (NO) and pro-inflammatory cytokines (TNF-α, IL-1ß, IL-6, and MCP-1) in LPS-induced RAW264.7 cells and concurrently mitigated oxidative stress by modulating the levels of malondialdehyde (MDA), catalase (CAT), and glutathione peroxidase (GSH-Px) in a dose-dependent manner. Furthermore, BCP supplementation significantly ameliorated HFD-induced obesity, improved glucose tolerance, and reduced systemic inflammation in HFD-fed rats. Notably, BCP treatment suppressed the mRNA expression of pro-inflammatory cytokines and alleviated intestinal barrier dysfunction by regulating the mRNA and protein expression of key tight junction proteins (ZO-1, occludin, and claudin-1), thereby inhibiting colonic inflammation caused by the TLR4/NF-κB signaling pathway. Additionally, BCP treatment altered the composition and function of the gut microbiota, leading to an increase in the total content of short-chain fatty acids (SCFAs), particularly acetic acid, propionic acid, isobutyric acid, and butyric acid. Collectively, our results highlighted the potential of BCP supplementation as a promising prebiotic strategy for treating obesity-induced colonic inflammation.


Assuntos
Microbioma Gastrointestinal , Photinia , Ratos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Dieta Hiperlipídica/efeitos adversos , Photinia/metabolismo , Receptor 4 Toll-Like/genética , Lipopolissacarídeos/farmacologia , Polifenóis/farmacologia , Obesidade/metabolismo , Inflamação/metabolismo , Transdução de Sinais , Citocinas/metabolismo , RNA Mensageiro
3.
Proc Natl Acad Sci U S A ; 119(45): e2211228119, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322742

RESUMO

Magnetic targeting is one of the most promising approaches for improving the targeting efficiency by which magnetic drug carriers are directed using external magnetic fields to reach their targets. As a natural magnetic nanoparticle (MNP) of biological origin, the magnetosome is a special "organelle" formed by biomineralization in magnetotactic bacteria (MTB) and is essential for MTB magnetic navigation to respond to geomagnetic fields. The magnetic targeting of magnetosomes, however, can be hindered by the aggregation and precipitation of magnetosomes in water and biological fluid environments due to the strong magnetic attraction between particles. In this study, we constructed a magnetosome-like nanoreactor by introducing MTB Mms6 protein into a reverse micelle system. MNPs synthesized by thermal decomposition exhibit the same crystal morphology and magnetism (high saturation magnetization and low coercivity) as natural magnetosomes but have a smaller particle size. The DSPE-mPEG-coated magnetosome-like MNPs exhibit good monodispersion, penetrating the lesion area of a tumor mouse model to achieve magnetic enrichment by an order of magnitude more than in the control groups, demonstrating great prospects for biomedical magnetic targeting applications.


Assuntos
Magnetossomos , Magnetospirillum , Nanopartículas , Neoplasias , Camundongos , Animais , Proteínas de Bactérias/metabolismo , Magnetossomos/química , Bactérias Gram-Negativas/metabolismo , Nanopartículas/química , Campos Magnéticos , Neoplasias/metabolismo , Magnetospirillum/metabolismo
4.
PeerJ ; 10: e13381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529497

RESUMO

Smoothened (SMO) protein is a member of the G protein-coupled receptor (GPCR) family that is involved in the Hedgehog (Hh) signaling pathway. It is a putative target for treating various cancers, including medulloblastoma and basal cell carcinoma (BCC). Characterizing membrane proteins such as SMO in their native state is highly beneficial for the development of effective pharmaceutical drugs, as their structures and functions are retained to the highest extent in this state. Therefore, although SMO protein is conventionally solubilized in detergent micelles, incorporating the protein in a lipid-based membrane mimic is still required. In this study, we used styrene maleic acid (SMA) copolymer that directly extracted membrane protein and surrounding lipids as well as formed the so-called polymer nanodiscs, to solubilize and purify the SMO transmembrane domain encapsulated by SMA-nanodiscs. The obtained SMA-nanodiscs showed high homogeneity and maintained the physiological activity of SMO protein, thereby enabling the measurement of the dissociation constant (Kd) for SMO ligands SMO-ligands Shh Signaling Antagonist V (SANT-1) and Smoothened Agonist (SAG) using ligand-based solution nuclear magnetic resonance spectroscopy. This work paves the way for investigating the structure, function, and drug development of SMO proteins in a native-like lipid environment.


Assuntos
Antineoplásicos , Proteínas Hedgehog , Ligantes , Receptores Acoplados a Proteínas G , Poliestirenos/química , Proteínas de Membrana/química , Lipídeos
5.
Angew Chem Int Ed Engl ; 60(43): 23327-23334, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34416073

RESUMO

Focal adhesion kinase (FAK) is a key mediator of tumour progression and metastasis. To date, clinical trials of FAK inhibitors have reported disappointing efficacy for oncology indications. We report the design and characterisation of GSK215, a potent, selective, FAK-degrading Proteolysis Targeting Chimera (PROTAC) based on a binder for the VHL E3 ligase and the known FAK inhibitor VS-4718. X-ray crystallography revealed the molecular basis of the highly cooperative FAK-GSK215-VHL ternary complex, and GSK215 showed differentiated in-vitro pharmacology compared to VS-4718. In mice, a single dose of GSK215 induced rapid and prolonged FAK degradation, giving a long-lasting effect on FAK levels (≈96 h) and a marked PK/PD disconnect. This tool PROTAC molecule is expected to be useful for the study of FAK-degradation biology in vivo, and our results indicate that FAK degradation may be a differentiated clinical strategy versus FAK inhibition for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Proteólise/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Benzamidas/química , Benzamidas/farmacocinética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dipeptídeos/química , Dipeptídeos/farmacocinética , Dipeptídeos/farmacologia , Quinase 1 de Adesão Focal/metabolismo , Humanos , Camundongos , Estrutura Molecular , Ubiquitina-Proteína Ligases/metabolismo
6.
Cell Death Dis ; 12(4): 303, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753729

RESUMO

Fibroblast growth factor 21 (FGF21) plays an important role in regulating glucose and lipid metabolism, but its role in cancer is less well-studied. We aimed to investigate the action of FGF21 in the development of prostate cancer (PCa). Herein, we found that FGF21 expression was markedly downregulated in PCa tissues and cell lines. FGF21 inhibited the proliferation and clone formation of LNCaP cells (a PCa cell line) and promoted apoptosis. FGF21 also inhibited PCa cell migration and invasiveness. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that FGF21 was related to autophagy and the phosphatidylinositol 3-kinase-Akt kinase-mammalian target of rapamycin (PI3K-Akt-mTOR) pathway. Mechanistically, FGF21 promoted autophagy in LNCaP cells by inhibiting the PI3K-Akt-mTOR-70S6K pathway. In addition, FGF21 inhibited PCa tumorigenesis in vivo in nude mice. Altogether, our findings show that FGF21 inhibits PCa cell proliferation and promoted apoptosis in PCa cells through facilitated autophagy. Therefore, FGF21 might be a potential novel target in PCa therapy.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias da Próstata/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/fisiologia , Linhagem Celular Tumoral , Fatores de Crescimento de Fibroblastos/genética , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transfecção
7.
Diabetes Metab Res Rev ; 37(2): e3373, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32592413

RESUMO

AIM: Follistatin-like-1 (FSTL-1) is considered to be a novel cytokine, and it is associated with metabolic diseases. However, it is necessary to investigate further the association of FSTL-1 with metabolic syndrome (MetS) and insulin resistance (IR). We performed a cross-sectional study to investigate the associated of circulating FSTL-1 with the MetS. MATERIALS AND METHODS: A cross-sectional study was performed in 487 Chinese people, including 231 control subjects and 256 patients with MetS. Bioinformatics analysis was used to determine the protein and pathways associated with FSTL-1. The protein and protein interaction (PPI) network was constructed and analysed. Serum FSTL-1 concentrations were determined by an ELISA assay. The association of FSTL-1 with MetS components and IR was assessed. RESULTS: Serum FSTL-1 levels were markedly higher in patients with newly diagnosed MetS than in controls (7.5 [5.6-9.2] vs 5.8 [5.0-7.7] µg/L, P < .01). According to bioinformatics analysis, the top high-degree genes were identified as the core genes, including SPARCL1, CYR61, LTBP1, IL-6, BMP2, BMP4, FBN1, FN1 CHRDL1 and FSTL-3. These genes are mainly enriched in pathways including TGF-ß, AGE-RAGE signalling pathway in diabetic complications, and Hippo signalling pathways; in basal cell carcinoma, cytokine-cytokine receptor interaction and in amoebic and Yersinia infections. Furthermore, serum FSTL-1 levels were positively associated with fasting plasma glucose (FPG), waist circumference (WC), blood pressure, triglyceride levels and visceral adiposity index (VAI). We found that serum FSTL-1 levels were markedly associated with MetS and IR by binary logistic regression analysis. CONCLUSIONS: We conclude that FSTL-1 may be a novel cytokine related to MetS and IR.


Assuntos
Folistatina , Síndrome Metabólica , Idoso , Estudos Transversais , Folistatina/sangue , Humanos , Resistência à Insulina , Síndrome Metabólica/sangue , Síndrome Metabólica/epidemiologia , Pessoa de Meia-Idade
8.
ACS Chem Biol ; 15(9): 2316-2323, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32697072

RESUMO

The Bcl-2 family of proteins, such as Bcl-xL and Bcl-2, play key roles in cancer cell survival. Structural studies of Bcl-xL formed the foundation for the development of the first Bcl-2 family inhibitors and FDA approved drugs. Recently, Proteolysis Targeting Chimeras (PROTACs) that degrade Bcl-xL have been proposed as a therapeutic modality with the potential to enhance potency and reduce toxicity versus antagonists. However, no ternary complex structures of Bcl-xL with a PROTAC and an E3 ligase have been successfully determined to guide this approach. Herein, we report the design, characterization, and X-ray structure of a VHL E3 ligase-recruiting Bcl-xL PROTAC degrader. The 1.9 Å heterotetrameric structure, composed of (ElonginB:ElonginC:VHL):PROTAC:Bcl-xL, reveals an extensive network of neo-interactions, between the E3 ligase and the target protein, and between noncognate parts of the PROTAC and partner proteins. This work illustrates the challenges associated with the rational design of bifunctional molecules where interactions involve composite interfaces.


Assuntos
Benzotiazóis/metabolismo , Isoquinolinas/metabolismo , Oligopeptídeos/metabolismo , Proteólise/efeitos dos fármacos , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína bcl-X/antagonistas & inibidores , Benzotiazóis/química , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Isoquinolinas/química , Isoquinolinas/farmacologia , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ligação Proteica , Proteína bcl-X/química , Proteína bcl-X/metabolismo
9.
Bioorg Med Chem Lett ; 30(9): 127106, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32184044

RESUMO

Inhibitors of CDK4 and CDK6 have emerged as important FDA-approved treatment options for breast cancer patients. The properties and pharmacology of CDK4/6 inhibitor medicines have been extensively profiled, and investigations into the degradation of these targets via a PROTAC strategy have also been reported. PROTACs are a novel class of small-molecules that offer the potential for differentiated pharmacology compared to traditional inhibitors by redirecting the cellular ubiquitin-proteasome system to degrade target proteins of interest. We report here the preparation of palbociclib-based PROTACs that incorporate binders for three different E3 ligases, including a novel IAP-binder, which effectively degrade CDK4 and CDK6 in cells. In addition, we show that the palbociclib-based PROTACs in this study that recruit different E3 ligases all exhibit preferential CDK6 vs. CDK4 degradation selectivity despite employing a selection of linkers between the target binder and the E3 ligase binder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Quinase 6 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Ubiquitina-Proteína Ligases/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/química , Quinase 4 Dependente de Ciclina/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células Jurkat , Oligopeptídeos/administração & dosagem , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Ubiquitina-Proteína Ligases/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética
10.
Br J Pharmacol ; 177(10): 2351-2364, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31975366

RESUMO

BACKGROUND AND PURPOSE: Blocking the voltage-gated proton channel HV 1 is a promising strategy for the treatment of diseases like ischaemia stroke and cancer. However, few HV 1 channel antagonists have been reported. Here, we have identified a novel HV 1 channel antagonist from scorpion venom and have elucidated its action mechanism. EXPERIMENTAL APPROACH: HV 1 and NaV channels were heterologously expressed in mammalian cell lines and their currents recorded using whole-cell patch clamp. Site-directed mutagenesis was used to generate mutants. Toxins were recombinantly produced in Escherichia coli. AGAP/W38F-HV 1 interaction was modelled by molecular dynamics simulations. KEY RESULTS: The scorpion toxin AGAP (anti-tumour analgesic peptide) potently inhibited HV 1 currents. One AGAP mutant has reduced NaV channel activity but intact HV 1 activity (AGAP/W38F). AGAP/W38F inhibited HV 1 channel activation by trapping its S4 voltage sensor in a deactivated state and inhibited HV 1 currents with less pH dependence than Zn2+ . Mutation analysis showed that the binding pockets of AGAP/W38F and Zn2+ in HV 1 channel partly overlapped (common sites are His140 and His193). The E153A mutation at the intracellular Coulombic network (ICN) in HV 1 channel markedly reduced AGAP/W38F inhibition, as observed for Zn2+ . Experimental data and MD simulations suggested that AGAP/W38F inhibited HV 1 channel using a Zn2+ -like long-range conformational coupling mechanism. CONCLUSION AND IMPLICATIONS: Our results suggest that the Zn2+ binding pocket in HV 1 channel might be a hotspot for modulators and valuable for designing HV 1 channel ligands. Moreover, AGAP/W38F is a useful molecular probe to study HV 1 channel and a lead compound for drug development.


Assuntos
Venenos de Escorpião , Analgésicos/farmacologia , Animais , Ativação do Canal Iônico , Prótons , Venenos de Escorpião/farmacologia , Zinco/farmacologia
11.
Environ Sci Process Impacts ; 21(10): 1736-1744, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31498354

RESUMO

Steroid estrogens (SEs), especially 17ß-estradiol (E2), can be a serious threat to the health of organisms. The removal of E2 from the natural environment is mainly carried out by microbial degradation partly mediated by biochar, which contains quinone structures. In this study, reed straw biochar samples made at four different heat treatment temperatures (HTTs) were used to mediate E2 microbial degradation by Shewanella oneidensis MR-1. The removal efficiency of E2 (95%) was highest in the presence of HTT - 500 °C biochar under anaerobic conditions after 120 h of microbial degradation. The effect of biochar on promoting microbial degradation was far more superior under anaerobic conditions than under aerobic conditions. The redox-activity and types of surface functional groups of biochar reveal that biochar can accept electrons generated by microorganisms in a timely manner. This mechanism promotes the metabolic process of cells and microbial degradation of E2 (exponential increase). Biochar particles rather than biochar-derived water-soluble organic compounds are responsible for this stimulating effect. These results highlight the impact that biochar has on microbial degradation of trace pollutants in a natural environment.


Assuntos
Carvão Vegetal/química , Estradiol/metabolismo , Shewanella/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Estradiol/análise , Estrogênios/metabolismo , Microscopia Eletrônica de Varredura , Oxirredução , Shewanella/efeitos dos fármacos , Acetato de Sódio/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
12.
BMC Cancer ; 19(1): 779, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391008

RESUMO

BACKGROUND: Numerous studies have highlighted that long non-coding RNAs (lncRNAs) can bind to microRNA (miRNA) sites as competing endogenous RNAs (ceRNAs), thereby affecting and regulating the expression of mRNAs and target genes. These lncRNA-associated ceRNAs have been theorized to play a significant role in cancer initiation and progression. However, the roles and functions of the lncRNA-miRNA-mRNA ceRNA network in squamous cell carcinoma of the tongue (SCCT) are still unclear. METHODS: The miRNA, mRNA and lncRNA expression profiles from 138 patients with SCCT were downloaded from The Cancer Genome Atlas database. We identified the differential expression of miRNAs, mRNAs, and lncRNAs using the limma package of R software. We used the clusterProfiler package for GO and KEGG pathway annotations. The survival package was used to estimate survival analysis according to the Kaplan-Meier curve. Finally, the GDCRNATools package was used to construct the lncRNA-miRNA-mRNA ceRNA network. RESULTS: In total, 1943 SCCT-specific mRNAs, 107 lncRNAs and 100 miRNAs were explored. Ten mRNAs (CSRP2, CKS2, ADGRG6, MB21D1, GMNN, RIPOR3, RAD51, PCLAF, ORC1, NAGS), 9 lncRNAs (LINC02560, HOXC13 - AS, FOXD2 - AS1, AC105277.1, AC099850.3, STARD4 - AS1, SLC16A1 - AS1, MIR503HG, MIR100HG) and 8 miRNAs (miR - 654, miR - 503, miR - 450a, miR - 379, miR - 369, miR - 190a, miR - 101, and let-7c) were found to be significantly associated with overall survival (log-rank p < 0.05). Based on the analysis of the lncRNA-miRNA-mRNA ceRNA network, one differentially expressed (DE) lncRNA, five DEmiRNAs, and three DEmRNAs were demonstrated to be related to the pathogenesis of SCCT. CONCLUSIONS: In this study, we described the gene regulation by the lncRNA-miRNA-mRNA ceRNA network in the progression of SCCT. We propose a new lncRNA-associated ceRNA that could help in the diagnosis and treatment of SCCT.


Assuntos
Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Neoplasias da Língua/genética , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Biologia Computacional/métodos , Feminino , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Transcriptoma
13.
Biomed Res Int ; 2019: 3065818, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31236404

RESUMO

Hepatocellular carcinoma (HCC) is a primary cause of cancer-related death in the world. Despite the fact that there are many methods to treat HCC, the 5-year survival rate of HCC is still at a low level. Emodin can inhibit the growth of HCC cells in vitro and in vivo. However, the gene regulation of emodin in HCC has not been well studied. In our research, RNA sequencing technology was used to identify the differentially expressed genes (DEGs) in HepG2 cells induced by emodin. A total of 859 DEGs were identified, including 712 downregulated genes and 147 upregulated genes in HepG2 cells treated with emodin. We used DAVID for function and pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed using STRING, and Cytoscape was used for module analysis. The enriched functions and pathways of the DEGs include positive regulation of apoptotic process, structural molecule activity and lipopolysaccharide binding, protein digestion and absorption, ECM-receptor interaction, complement and coagulation cascades, and MAPK signaling pathway. 25 hub genes were identified and pathway analysis revealed that these genes were mainly enriched in neuropeptide signaling pathway, inflammatory response, and positive regulation of cytosolic calcium ion concentration. Survival analysis showed that LPAR6, C5, SSTR5, GPR68, and P2RY4 may be involved in the molecular mechanisms of emodin therapy for HCC. A quantitative real-time PCR (qRT-PCR) assay showed that the mRNA levels of LPAR6, C5, SSTR5, GPR68, and P2RY4 were significantly decreased in HepG2 cells treated with emodin. In conclusion, the identified DEGs and hub genes in the present study provide new clues for further researches on the molecular mechanisms of emodin.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Emodina/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Transcriptoma/genética , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Biologia Computacional , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Mapeamento de Interação de Proteínas , Receptores Acoplados a Proteínas G/genética , Receptores de Ácidos Lisofosfatídicos/genética , Receptores Purinérgicos P2/genética , Receptores de Somatostatina/genética , Transdução de Sinais/efeitos dos fármacos , Software
14.
Ecotoxicol Environ Saf ; 171: 313-320, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30612019

RESUMO

Photolysis and microbial activity are relatively obvious in shallow, eutrophic waters with low dissolved oxygen content. Ubiquitous humic acid (HA) can act as electron acceptor and be reduced by bacterial under such conditions, and the reduced form of humic acid (RHA) plays an important role in the photolysis contaminants. In this study, anaerobic 17α-ethinylestradiol (EE2) photodegradation was performed along with biodegradation by Shewanella putrefaciens mediated by HA. The mechanism of such coupled photolysis and biodegradation of EE2 was thus elucidated. The removal rate in such coupled degradation in the presence of 10 mgC L-1 of HA at pH 8.0 was greater than that of either photolysis or biodegradation alone. HA which had been reduced in a double-chamber microbial fuel cell showed better promotion to EE2 photodegradation than fresh HA. Reactive species scavenging experiments indicated that hydroxyl radical and excited triplet states of HA were primary contributors to EE2 photodegradation in anaerobic conditions. More of them were produced from RHA than from pristine HA. Besides, the degraded EE2 solutions inhibited the proliferation of MCF-7 human cancer Cells. These findings improve our understanding of the environmental transformation of EE2 in the shallow, anoxic waters.


Assuntos
Biodegradação Ambiental , Etinilestradiol/química , Substâncias Húmicas/microbiologia , Fotólise , Shewanella putrefaciens , Poluentes Químicos da Água/química , Proliferação de Células/efeitos dos fármacos , Etinilestradiol/análise , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7/fisiologia , Oxirredução , Poluentes Químicos da Água/análise
15.
Artigo em Inglês | MEDLINE | ID: mdl-30271456

RESUMO

Non-small cell lung cancer (NSCLC) is a serious threat to people's health. This study aims to determine the possible effect of Gujin Xiaoliu Tang (GJXLT) on NSCLC, which is an empirical formula from Professor Dai-Han Zhou. In this study, chromatographic fingerprinting of GJXLT and A549 cell model in vitro and in vivo was established. We cultured A549 cells in vitro and found that GJXLT inhibited A549 cell growth and induced apoptosis. Compared with the control group, the expression of p-STAT3 and VEGF proteins in the GJXLT groups was decreased. Similar findings were also observed in vivo. First, GJXLT inhibited the growth of transplanted tumor and did not reduce the weight of the tumor-bearing mice in comparison with that of the control group. Then, the Ki-67 expression of transplanted tumor in the GJXLT groups was decreased. In addition, the apoptosis rate of transplanted tumor in the GJXLT groups was increased. Overall, our data showed that GJXLT inhibited A549 cell proliferation and induced apoptosis in vivo and in vitro. Furthermore, GJXLT inhibited the growth of lung cancer xenograft in nude mice model with no obvious side effects. The anti-tumor effect of GJXLT might also be related to the inhibition of p-STATS and VEGF expression in the JAK2/STAT3 pathway. Our results demonstrated the potential of GJXLT as a novel treatment for NSCLC.

16.
Bioconjug Chem ; 29(9): 2936-2944, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30148623

RESUMO

Melittin (MLT), as a natural active biomolecule, can penetrate the tumor cell membrane to play a role in cancer treatment and will attract more attention in future development of antitumor drugs. The main component of natural bee venom MLT was modified by introducing a pH-sensitive amide bond between the 2,3-dimethyl maleimide (DMMA) and the lysine (Lys) of MLT (MLT-DMMA). MLT and its corresponding modified peptide MLT-DMMA were used for antitumor and biocompatibility validation. The biomaterial characteristics were tested by MALDI-TOF MS, 1H NMR, IUPAC and HPLC, cell viability, hemolytic and animal experiment safety evaluation. Compared with the primary melittin, the modified peptide showed decreased surface charge and low cytotoxicity in physiological conditions. Moreover, cell assays confirmed the acid-activated conversion of amide bond resulting in adequate safety during delivery and timely antitumor activity in tumor lesions. Thus, MLT-DMMA provided a feasible platform to improve the targeted and safe antitumor applications.


Assuntos
Ácidos/química , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Meliteno/química , Meliteno/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Materiais Biocompatíveis , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Larva/efeitos dos fármacos , Anidridos Maleicos/química , Meliteno/farmacologia , Espectroscopia de Prótons por Ressonância Magnética , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Peixe-Zebra/crescimento & desenvolvimento
17.
Theranostics ; 8(11): 3038-3058, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29896301

RESUMO

Nanotechnology-based antitumor drug delivery systems, known as nanocarriers, have demonstrated their efficacy in recent years. Typically, the size of the nanocarriers is around 100 nm. It is imperative to achieve an optimum size of these nanocarriers which must be designed uniquely for each type of delivery process. For pH-responsive nanocarriers with programmable size, changes in pH (~6.5 for tumor tissue, ~5.5 for endosomes, and ~5.0 for lysosomes) may serve as an endogenous stimulus improving the safety and therapeutic efficacy of antitumor drugs. This review focuses on current advanced pH-responsive nanocarriers with programmable size changes for anticancer drug delivery. In particular, pH-responsive mechanisms for nanocarrier retention at tumor sites, size reduction for penetrating into tumor parenchyma, escaping from endo/lysosomes, and swelling or disassembly for drug release will be highlighted. Additional trends and challenges of employing these nanocarriers in future clinical applications are also addressed.


Assuntos
Antineoplásicos/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Liberação Controlada de Fármacos , Endossomos/química , Concentração de Íons de Hidrogênio , Lisossomos/química , Nanotecnologia , Tamanho da Partícula
18.
Int J Oncol ; 53(1): 203-214, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29693147

RESUMO

Carboxyl terminus of Hsc-70-interacting protein (CHIP) is an E3 ubiquitin ligase that induces the ubiquitination and degradation of numerous tumor-associated proteins and serves as a suppressor or promoter in tumor progression. To date, the molecular mechanism of CHIP in prostate cancer remains unknown. Therefore, the present study investigated the biological function of CHIP in prostate cancer cells and obtained evidence that CHIP expression is upregulated in prostate cancer tissues. The CHIP vector was introduced into DU145 cancer cells and the cell biological behaviour was examined through a series of experiments, including cell growth, cell apoptosis and migration and invasion assays. The results indicated that the overexpression of CHIP in DU145 prostatic cancer cells promoted cell proliferation through activation of the protein kinase B (AKT) signaling pathway, which subsequently increased cyclin D1 protein levels and decreased p21 and p27 protein levels. The overexpression of CHIP significantly increased the migration and invasion of the DU145 cells, which is possible due to activation of the AKT signaling pathway and upregulation of vimentin. The expression level of CHIP was observed to be increased in human prostate cancer tissues compared with the adjacent normal tissue. Furthermore, the CHIP expression level exhibited a positively association with the Gleason score of the patents. These findings indicate that CHIP functions as an oncogene in prostate cancer.


Assuntos
Proliferação de Células/genética , Neoplasias da Próstata/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ubiquitina-Proteína Ligases/genética , Idoso , Idoso de 80 Anos ou mais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Antígeno Nuclear de Célula em Proliferação/genética , Neoplasias da Próstata/patologia , Transdução de Sinais/genética , Quinases Ativadas por p21/genética
19.
Gene Ther ; 25(3): 198-204, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29599530

RESUMO

Excessive activated T-cell proliferation was observed in vivo in one patient after an anti-CD19-chimeric antigen receptor (CAR) T-cell infusion. The patient, who had chemotherapy refractory and CD19+ diffuse large B-cell lymphoma (DLBCL), received an anti-CD19 CAR T-cell infusion following conditioning chemotherapy (fludarabine/cyclophosphamide). The lymphocyte count in the peripheral blood (PB) increased to 77 × 109/L on day 13 post infusion, and the proportion of CD8+ actived T cells was 93.06% of the lymphocytes. Then, the patient suffered from fever and hypoxaemia. Significant increases in serum cytokine, lactate dehydrogenase, aspartate aminotransferase (AST), alanine transaminase (ALT), and glutamic-oxalacetic transaminase (γ-GT) levels were observed. A high-throughput sequencing analysis for T-cell receptors (TCRs) and whole-genome sequencing were used to explore the mechanisms underlying this excessive T-cell proliferation. TCR diversity was demonstrated, but no special gene mutation was found. The patient was found to be infected with the John Cunningham polyomavirus (JCV). It cannot be ruled out the bystander activation pathway induced by JCV infections related the excessive activated T-cell proliferation. Although the clinical and laboratory data do not fully explain the reason for excessive T-cell proliferation after the anti-CD19 CAR T-cell infusion, the risk of this type of toxicity should be emphasized. This study was registered at www.clinicaltrials.gov as NCT01864889.


Assuntos
Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Adulto , Antígenos CD19/imunologia , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Citocinas/efeitos adversos , Humanos , Imunoterapia , Imunoterapia Adotiva/efeitos adversos , Interleucinas/imunologia , Interleucinas/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/uso terapêutico
20.
Oncol Res ; 26(4): 637-644, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29169410

RESUMO

Claudin18 (CLDN18) is necessary for intercellular junctions and is reported to be involved in cell migration and metastasis, making it like an oncogene in various cancer types. However, the biological function and regulatory mechanisms of CLDN18 in lung adenocarcinoma are not yet clear. In this study, we found downregulation of miR-767-3p and upregulation of CLDN18 in lung adenocarcinoma tissue and cell lines. In addition, there was a negative correlation between the expression of miR-767-3p and CLDN18 in lung adenocarcinoma. Double luciferase reporter gene analysis showed that miR-767-3p modulates the expression of CLDN18 by binding its 3'-untranslated regions (3'-UTR). Knockdown of CLDN18 results in a decrease in the growth, migration, and invasion of lung adenocarcinoma cells. Although overexpression of miR-767-3p inhibits lung adenocarcinoma cell growth and migration, these effects can be rescued by reexpressing CLDN18. In summary, the data suggest that miR-767-3p inhibits tumor cell proliferation, migration, and invasion by targeting CLDN18, providing a promising therapeutic target for lung adenocarcinoma.


Assuntos
Adenocarcinoma/genética , Movimento Celular/genética , Proliferação de Células/genética , Claudinas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Adenocarcinoma/patologia , Animais , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA