Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 555: 216044, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36574880

RESUMO

This study aimed at elucidating the crosstalk between redox reaction and metabolic remodeling through uncovering the mechanism underlying WZ35-mediated reactive oxygen species (ROS) production and regulation of amino acid metabolism to inhibit gastric cancer (GC) cell metastasis. The activity and biosafety of curcumin analog, WZ35, were verified in vitro and in vivo. The potential molecular mechanism underlying WZ35-mediated enhanced radiotherapeutic sensitivity by reduced Glutathione (GSH) depletion was elucidated by RNA sequencing, single-cell sequencing (scRNA-seq), metabolic mass spectrometry, and other molecular experiments. Compared to curcumin, WZ35 proved more potent anti-proliferative and anti-metastasis properties. Importantly, we demonstrated that WZ35 could consume GSH in multiple ways, including by reduction of raw materials and consumption reserves, inhibition of reformation, and enhanced decomposition. Mechanistically, we identify that WZ35 maintains the GSH depletion phenotype through the ROS-YAP-AXL-ALKBH5-GLS2 loop, further backing the relevance of metabolic remodeling in the tumor microenvironment with tumor metastasis and the role of m6A in tumor metastasis. Collectively, our study identified WZ35 as a novel GSH depletion agent and a previously undiscovered GSH depletion loop mechanism in GC cell metastasis.


Assuntos
Curcumina , Neoplasias Gástricas , Humanos , Curcumina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
2.
Int J Mol Sci ; 23(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36499164

RESUMO

Protein arginine methyltransferase 5 (PRMT5) is an epigenetic regulator which has been proven to be a potential target for cancer therapy. We observed that PRMT5 underwent alternative splicing (AS) and generated a spliced isoform PRMT5-ISO5 in hepatocellular carcinoma (HCC) patients after radiotherapy. However, the regulatory mechanism and the clinical implications of IR-induced PRMT5 AS are unclear. This work revealed that serine and arginine rich splicing factor 3 (SRSF3) silencing increased PRMT5-ISO5 level, whereas heterogeneous nuclear ribonucleoprotein H 1 (HNRNPH1) silencing reduced it. Then, we found that SRSF3 and HNRNPH1 competitively combined with PRMT5 pre-mRNA located at the region around the 3'- splicing site on intron 2 and the alternative 3'- splicing site on exon 4. IR-induced SRSF3 downregulation led to an elevated level of PRMT5-ISO5, and exogenous expression of PRMT5-ISO5 enhanced cell radiosensitivity. Finally, we confirmed in vivo that IR induced the increased level of PRMT5-ISO5 which in turn enhanced tumor killing and regression, and liver-specific Prmt5 depletion reduced hepatic steatosis and delayed tumor progression of spontaneous HCC. In conclusion, our data uncover the competitive antagonistic interaction of SRSF3 and HNRNPH1 in regulating PRMT5 splicing induced by IR, providing potentially effective radiotherapy by modulating PRMT5 splicing against HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Processamento Alternativo/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/radioterapia , Linhagem Celular Tumoral , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/radioterapia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Precursores de RNA/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo
3.
J Transl Med ; 20(1): 530, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401321

RESUMO

BACKGROUND: Liver cancer is the fifth leading cause of cancer death worldwide, but early diagnosis and treatment of liver cancer remains a clinical challenge. How to screen and diagnose liver cancer early and prolong the survival rate is still the focus of researchers. METHODS: Cell experiments were used to detect the effect of WZ35 on the colony formation ability and proliferation activity of hepatoma cells, nude mouse experiment to observe the in vivo anticancer activity and toxic side effects of WZ35; metabolomics analysis, glucose metabolism experiment and Seahorse analysis of liver cancer cells treated with WZ35; cell experiments combined with bioinformatics analysis to explore the mechanism of WZ35-mediated metabolic reprogramming to exert anticancer activity; tissue microarray and case analysis to evaluate the clinical significance of biomarkers for early diagnosis, treatment and prognosis evaluation of liver cancer. RESULTS: WZ35 inhibited the proliferation activity of various cell lines of liver cancer, and showed good therapeutic effect in nude mice model of hepatocellular carcinoma without obvious toxic and side effects; WZ35 inhibited the absorption of glucose in hepatoma cells, and the drug effect glycolysis, phosphorylation and purine metabolism are relatively seriously damaged; WZ35 mainly inhibits YAP from entering the nucleus as a transcription factor activator by activating oxidative stress in liver cancer cells, reducing the transcription of GLUT1, and finally reducing its GLUT1. Tissue microarray and case analysis showed that GLUT1 and YAP were highly expressed and correlated in liver cancer patients, and were associated with poor patient prognosis. The GLUT1-YAP risk model had a high score in predicting prognosis. CONCLUSION: The study confirms that WZ35 is a small molecule glycolysis inhibitor, and through its properties, it mediates metabolic reprogramming dominated by impaired glycolysis, oxidative phosphorylation and purine metabolism to inhibit the proliferation activity of liver cancer cells. Our findings present novel insights into the pathology of liver cancer and potential targets for new therapeutic strategies. GLUT1-YAP has important reference significance for predicting the stages of disease progression in liver cancer patients and have the potential to serve as novel biomarkers for the diagnosis and treatment of liver cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Camundongos Nus , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Glicólise , Purinas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA