Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(12): e2303767, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38230855

RESUMO

Microrobots have emerged as powerful tools for manipulating particles, cells, and assembling biological tissue structures at the microscale. However, achieving precise and flexible operation of arbitrary-shaped microstructures in 3D space remains a challenge. In this study, three novel operation methods based on bubble microrobots are proposed to enable delicate and multifunctional manipulation of various microstructures. These methods include 3D turnover, fixed-point rotation, and 3D ejection. By harnessing the combined principles of the effect of the heat flow field and surface tension of an optothermally generated bubble, the bubble microrobot can perform tasks such as flipping an SIA humanoid structure, rotating a bird-like structure, and launching a hollow rocket-like structure. The proposed multi-mode operation of bubble microrobots enables diverse attitude adjustments of microstructures with different sizes and shapes in both 2D and 3D spaces. As a demonstration, a biological microenvironment of brain glioblastoma is constructed by the bubble microrobot. The simplicity, versatility, and flexibility of this proposed method hold great promise for applications in micromanipulation, assembly, and tissue engineering.


Assuntos
Robótica , Robótica/instrumentação , Humanos , Glioblastoma/patologia , Engenharia Tecidual/métodos , Desenho de Equipamento
2.
Biofabrication ; 14(2)2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35263719

RESUMO

The specific spatial distribution of tissue generates a heterogeneous micromechanical environment that provides ideal conditions for diverse functions such as regeneration and angiogenesis. However, to manufacture microscale multicellular heterogeneous tissue modulesin vitroand then assemble them into specific functional units is still a challenging task. In this study, a novel method for the digital assembly of heterogeneous microtissue modules is proposed. This technique utilizes the flexibility of digital micromirror device-based optical projection lithography and the manipulability of bubble-based microrobots in a liquid environment. The results indicate that multicellular microstructures can be fabricated by increasing the inlets of the microfluidic chip. Upon altering the exposure time, the Young's modulus of the entire module and different regions of each module can be fine-tuned to mimic normal tissue. The surface morphology, mechanical properties, and internal structure of the constructed bionic peritoneum were similar to those of the real peritoneum. Overall, this work demonstrates the potential of this system to produce and control the posture of modules and simulate peritoneal metastasis using reconfigurable manipulation.


Assuntos
Microfluídica , Impressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA