Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 260(Pt 1): 129312, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38216020

RESUMO

Flavin-dependent halogenases (FDHs) have tremendous applications in synthetic chemistry. A single-component FDH, AetF, exhibits both halogenase and reductase activities in a continuous polypeptide chain. AetF exhibits broad substrate promiscuity and catalyzes the two-step bromination of l-tryptophan (l-Trp) to produce 5-bromotryptophan (5-Br-Trp) and 5,7-dibromo-l-tryptophan (5,7-di-Br-Trp). To elucidate the mechanism of action of AetF, we solved its crystal structure in complex with FAD, FAD/NADP+, FAD/l-Trp, and FAD/5-Br-Trp at resolutions of 1.92-2.23 Å. The obtained crystal structures depict the unprecedented topology of single-component FDH. Structural analysis revealed that the substrate flexibility and dibromination capability of AetF could be attributed to its spacious substrate-binding pocket. In addition, highly-regulated interaction networks between the substrate-recognizing residues and 5-Br-Trp are crucial for the dibromination activity of AetF. Several Ala variants underwent monobromination with >98 % C5-regioselectivity toward l-Trp. These results reveal the catalytic mechanism of single-component FDH for the first time and contribute to efficient FDH protein engineering for biocatalytic halogenation.


Assuntos
Oxirredutases , Triptofano , Oxirredutases/metabolismo , Triptofano/metabolismo , Halogenação , Compostos Orgânicos , Flavinas/metabolismo
2.
Int J Biol Macromol ; 256(Pt 2): 128428, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013086

RESUMO

Selenoneine (SEN) is a natural histidine derivative with radical-scavenging activity and shows higher antioxidant potential than its sulfur-containing isolog ergothioneine (EGT). Recently, the SEN biosynthetic pathway in Variovorax paradoxus was reported. Resembling EGT biosynthesis, the committed step of SEN synthesis is catalyzed by a nonheme Fe-dependent oxygenase termed SenA. This enzyme catalyzes oxidative carbon­selenium (C-Se) bond formation to conjugate N-α-trimethyl histidine (TMH) and selenosugar to yield selenoxide; the process parallels the EGT biosynthetic route, in which sulfoxide synthases known as EgtB members catalyze the conjugation of TMH and cysteine or γ-glutamylcysteine to afford sulfoxides. Here, we report the crystal structures of SenA and its complex with TMH and thioglucose (SGlc), an analog of selenoglucose (SeGlc) at high resolution. The overall structure of SenA adopts the archetypical fold of EgtB, which comprises a DinB-like domain and an FGE-like domain. While the TMH-binding site is highly conserved to that of EgtB, a various substrate-enzyme interaction network in the selenosugar-binding site of SenA features a number of water-mediated hydrogen bonds. The obtained structural information is beneficial for understanding the mechanism of SenA-mediated C-Se bond formation.


Assuntos
Ergotioneína , Compostos Organosselênicos , Histidina , Ferro , Oxigenases , Ergotioneína/química , Ergotioneína/metabolismo
3.
Appl Environ Microbiol ; 88(9): e0249721, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35435717

RESUMO

Nonheme iron- and α-ketoglutarate (αKG)-dependent halogenases (NHFeHals), which catalyze the regio- and stereoselective halogenation of the unactivated C(sp3)-H bonds, exhibit tremendous potential in the challenging asymmetric halogenation. AdeV from Actinomadura sp. ATCC 39365 is the first identified carrier protein-free NHFeHal that catalyzes the chlorination of nucleotide 2'-deoxyadenosine-5'-monophosphate (2'-dAMP) to afford 2'-chloro-2'-deoxyadenosine-5'-monophosphate. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG at resolutions of 1.76 and 1.74 Å, respectively. AdeV possesses a typical ß-sandwich topology with H194, H252, αKG, chloride, and one water molecule coordinating FeII in the active site. Molecular docking, mutagenesis, and biochemical analyses reveal that the hydrophobic interactions and hydrogen bond network between the substrate-binding pocket and the adenine, deoxyribose, and phosphate moieties of 2'-dAMP are essential for substrate recognition. Residues H111, R177, and H192 might play important roles in the second-sphere interactions that control reaction partitioning. This study provides valuable insights into the catalytic selectivity of AdeV and will facilitate the rational engineering of AdeV and other NHFeHals for synthesis of halogenated nucleotides. IMPORTANCE Halogenated nucleotides are a group of important antibiotics and are clinically used as antiviral and anticancer drugs. AdeV is the first carrier protein-independent nonheme iron- and α-ketoglutarate (αKG)-dependent halogenase (NHFeHal) that can selectively halogenate nucleotides and exhibits restricted substrate specificity toward several 2'-dAMP analogues. Here, we determined the complex crystal structures of AdeV/FeII/Cl and AdeV/FeII/Cl/αKG. Molecular docking, mutagenesis, and biochemical analyses provide important insights into the catalytic selectivity of AdeV. This study will facilitate the rational engineering of AdeV and other carrier protein-independent NHFeHals for synthesis of halogenated nucleotides.


Assuntos
Halogenação , Ácidos Cetoglutáricos , Proteínas de Transporte , Compostos Ferrosos , Halogênios , Ferro/química , Simulação de Acoplamento Molecular , Nucleotídeos
4.
J Biotechnol ; 309: 107-112, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31926981

RESUMO

Ginsenoside Rh2, a rare protopanaxadiol (PPD)-type triterpene saponin isolated from Panax ginseng, exhibits notable anticancer and immune-system-enhancing activities. Glycosylation catalyzed by uridine diphosphate-dependent glucosyltransferase (UGT) is the final biosynthetic step of ginsenoside Rh2. In this study, UGT73C5 isolated from Arabidopsis thaliana was demonstrated to selectively transfer a glucosyl moiety to the C3 hydroxyl group of PPD to synthesize ginsenoside Rh2. UGT73C5 was coupled with sucrose synthase (SuSy) from A. thaliana to regenerate costly uridine diphosphate glucose (UDPG) from cheap sucrose and catalytic amounts of uridine diphosphate (UDP). The UGT73C5/SuSy ratio, temperature, pH, cofactor UDP, and PPD concentrations for UGT73C5-SuSy coupled reactions were optimized. Through the stepwise addition of PPD, the maximal ginsenoside Rh2 production was 3.2 mg mL-1, which was the highest yield reported to date. These promising results provided an efficient and cost-effective approach to semisynthesize the highly valuable ginsenoside Rh2.


Assuntos
Arabidopsis/enzimologia , Medicamentos de Ervas Chinesas/metabolismo , Glucosiltransferases/metabolismo , Sapogeninas/metabolismo , Arabidopsis/genética , Técnicas de Cultura Celular por Lotes , Biocatálise , Vias Biossintéticas , Ginsenosídeos/biossíntese , Panax/metabolismo , Sapogeninas/química , Saponinas , Triterpenos , Difosfato de Uridina
5.
Org Biomol Chem ; 17(8): 2070-2076, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30628619

RESUMO

LepI is a novel multifunctional enzyme that catalyzes stereoselective dehydration, Diels-Alder reaction, and retro-Claisen rearrangement. Here we report the crystal structure of LepI in complex with its co-factor S-adenosyl methionine (SAM). LepI forms a tetramer via the N-terminal helical domain and binds to a SAM molecule in the C-terminal catalytic domain. The binding modes of various LepI substrates are investigated by docking simulations, which suggest that the substrates are bound via both hydrophobic and hydrophilic forces, as well as cation-π interactions with the positively charged SAM. The reaction starts with a dehydration step in which H133 possibly deprotonates the pyridone hydroxyl group of the substrate, while D296 might protonate an alkyl-chain hydroxyl group. Subsequent pericyclization may be facilitated by the correct fold of the substrate's alkyl chain and a thermodynamic driving force towards σ-bonds at the expense of π-bonds. These results provide structural insights into LepI catalysis and are important in understanding the mechanism of enzymatic pericyclization.


Assuntos
Aspergillus nidulans/enzimologia , Benzopiranos/metabolismo , Proteínas Fúngicas/metabolismo , Piridonas/metabolismo , S-Adenosilmetionina/metabolismo , Sequência de Aminoácidos , Aspergillus nidulans/química , Aspergillus nidulans/metabolismo , Vias Biossintéticas , Domínio Catalítico , Cristalografia por Raios X , Reação de Cicloadição , Proteínas Fúngicas/química , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Estereoisomerismo
6.
Biotechnol Biofuels ; 11: 290, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386427

RESUMO

BACKGROUND: Asymmetric aldol-type C-C bond formation with ketones used as electrophilic receptor remains a challenging reaction for aldolases as biocatalysts. To date, only one kind of dihydroxyacetone phosphate (DHAP)-dependent aldolases has been discovered and applied to synthesize branched-chain sugars directly using DHAP and dihydroxyacetone (DHA) as substrate. However, the unstable and high-cost properties of DHAP limit large-scale application. Therefore, biosynthesis of branched-chain sugar from low-cost and abundant carbon sources is essential. RESULTS: The detailed catalytic property of l-rhamnulose-1-phosphate aldolase (RhaD) and l-fuculose-1-phosphate aldolase (FucA) from Escherichia coli in catalyzing the aldol reactions with DHA as electrophilic receptors was characterized. Furthermore, we calculated the Bürgi-Dunitz trajectory using molecular dynamics simulations, thereby revealing the original sources of the catalytic efficiency of RhaD and FucA. A multi-enzyme reaction system composed of formolase, DHA kinase, RhaD, fructose-1-phosphatase, and polyphosphate kinase was constructed to in vitro produce dendroketose, a branched-chain sugar, from one-carbon formaldehyde. The conversion rate reached 86% through employing a one-pot, two-stage reaction process. Moreover, we constructed two artificial pathways in Corynebacterium glutamicum to obtain this product in vivo starting from glucose or glycerol. Fermentation with glycerol as feedstock produced 6.4 g/L dendroketose with a yield of 0.45 mol/mol glycerol, representing 90% of the maximum theoretical value. Additionally, the dendroketose production reached 36.3 g/L with a yield of 0.46 mol/mol glucose when glucose served as the sole carbon resource. CONCLUSIONS: The detailed enzyme kinetics data of the two DHAP-dependent aldolases with DHA as electrophilic receptors were presented in this study. In addition, insights into this catalytic property were given via in silico simulations. Moreover, the cost-effective synthesis of dendroketose starting from one-, three-, and six-carbon resources was achieved through in vivo and in vitro metabolic engineering strategies. This rare branched-chain ketohexose may serve as precursor to prepare 4-hydroxymethylfurfural and branched-chain alkanes using chemical method.

7.
J Agric Food Chem ; 66(11): 2830-2837, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29484884

RESUMO

Ginsenosides, the major effective ingredients of Panax ginseng, exhibit various biological properties. UDP-glycosyltransferase (UGT)-mediated glycosylation is the last biosynthetic step of ginsenosides and contributes to their immense structural and functional diversity. In this study, UGT Bs-YjiC from Bacillus subtilis 168 was demonstrated to transfer a glucosyl moiety to the free C3-OH and C12-OH of protopanaxadiol (PPD) and PPD-type ginsenosides to synthesize natural and unnatural ginsenosides. In vitro assays showed that unnatural ginsenoside F12 (3- O-ß-d-glucopyranosyl-12- O-ß-d-glucopyranosyl-20( S)-protopanaxadiol) exhibited remarkable activity against diverse human cancer cell lines. A one-pot reaction by coupling Bs-YjiC to sucrose synthase (SuSy) was performed to regenerate UDP-glucose from sucrose and UDP. With PPD as the aglycon, an unprecedented high yield of ginsenosides F12 (3.98 g L-1) and Rh2 (0.20 g L-1) was obtained by optimizing the conversion conditions. This study provides an efficient approach for the biosynthesis of ginsenosides using a UGT-SuSy cascade reaction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Ginsenosídeos/metabolismo , Glucosiltransferases/metabolismo , Glicosiltransferases/metabolismo , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ginsenosídeos/química , Glucosiltransferases/química , Glucosiltransferases/genética , Glicosiltransferases/química , Glicosiltransferases/genética
9.
Nutrients ; 8(6)2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27304964

RESUMO

Colorectal cancer and throat cancer are the world's most prevalent neoplastic diseases, and a serious threat to human health. Plant triterpene glycosides have demonstrated antitumor activity. In this study, we investigated potential anticancer effects of mogroside IVe, a triterpenoid glycoside from monk fruit, using in vitro and in vivo models of colorectal and laryngeal cancer. The effects of mogroside IVe on the proliferation of colorectal cancer HT29 cells and throat cancer Hep-2 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the expression levels of p53, phosphorylated ERK1/2, and MMP-9 were analyzed by western blotting and immunohistochemistry. The results indicated that mogroside IVe inhibited, in a dose-dependent manner, the proliferation of HT29 and Hep-2 cells in culture and in xenografted mice, which was accompanied by the upregulation of tumor suppressor p53, and downregulation of matrix metallopeptidase 9 (MMP-9) and phosphorylated extracellular signal-regulated kinases (ERK)1/2. This study revealed the suppressive activity of mogroside IVe towards colorectal and throat cancers and identified the underlying mechanisms, suggesting that mogroside IVe may be potentially used as a biologically-active phytochemical supplement for treating colorectal and throat cancers.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Frutas/química , Glicosídeos/farmacologia , Neoplasias Faríngeas/tratamento farmacológico , Extratos Vegetais/farmacologia , Triterpenos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cucurbitaceae/química , Regulação para Baixo , Células HT29 , Humanos , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação , Compostos Fitoquímicos/farmacologia , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Am J Cancer Res ; 5(4): 1308-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26101699

RESUMO

Unlike solid tumors, the primary strategy for leukemia treatment is chemotherapy. However, leukemia chemotherapy is associated with adverse drug effects and drug resistance. Therefore, it is imperative to identify novel agents that effectively treat leukemia while minimizing adverse effects. The Raf/MEK/extracellular regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) pathways have been implicated in leukemia carcinogenesis, and provide novel molecular targets for therapeutic intervention in cancer. Mogrol, a biometabolite of mogrosides found in Siraitia grosvenorii, has exhibited anti-cancer activities; however, the underlying mechanism of this effect remains unclear. To clarify its anti-cancer activity and mechanism of action, we treated K562 leukemia cells with mogrol. Mogrol suppressed leukemia cell growth via inhibition of the ERK1/2 and STAT3 pathways, in particular, through the suppression of p-ERK1/2 and p-STAT3. Inhibition of these pathways suppressed Bcl-2 expression, thereby inducing K562 cell apoptosis. Furthermore, mogrol enhanced p21 expression, resulting in G0/G1 cell cycle arrest. The findings provide new perspectives regarding the role of mogrol in leukemia treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA