RESUMO
BACKGROUND: Breast cancer (BC), a common malignant tumor originating from the terminal ductal lobular unit of the breast, poses a substantial health risk to women. Previous studies have associated cytochrome b561 (CYB561) with a poor prognosis in BC; however, its underlying mechanism of this association remains unclear. METHODS: We investigated the expression of CYB561 mRNA in BC using databases such as The Cancer Genome Atlas, Gene Expression Omnibus, Tumor-Normal-Metastatic plot, and Kaplan-Meier plotter databases. The prognostic value of CYB561 protein in BC was assessed in relation to its expression levels in tumor tissue samples from 158 patients with BC. The effect of CYB561 on BC progression was confirmed using in vivo and in vitro experiments. The biological functions and related signaling pathways of CYB561 in BC were explored using gene microarray, Innovative Pathway, Gene Ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The correlation between CYB561 and the BC tumor immune microenvironment was evaluated using the CIBERSORT algorithm and single-cell analysis and further validated through immunohistochemistry of serial sections. RESULTS: Our study demonstrated that upregulation of CYB561 expression predicted poor prognosis in patients with BC and that CYB561 knockdown inhibited the proliferation, migration, and invasive ability of BC cells in vitro. CYB561 knockdown inhibited BC tumor formation in vivo.CYB561 was observed to modulate downstream tropomyosin 1 expression. Furthermore, CYB561 expression was associated with macrophage M2 polarization in the BC immune microenvironment. CONCLUSIONS: Elevated CYB561 expression suggests a poor prognosis for patients with BC and is associated with macrophage M2 polarization in the BC microenvironment. Therefore, CYB561 could potentially serve as a therapeutic target for BC treatment.
Assuntos
Neoplasias da Mama , Microambiente Tumoral , Animais , Feminino , Humanos , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/imunologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Prognóstico , Microambiente Tumoral/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismoRESUMO
RAB10, a member of the small GTPase family, has complex biological functions, but its role in breast cancer (BC) remains unclear. The aim of this study was to investigate the relationship between RAB10's role in BC, its biological functions, and BC prognosis. An online database was used to analyze the correlation between differential expression of RAB10 in BC and prognosis. The results of immunohistochemical assays in clinical cohorts were combined with the database analysis. The chi-square test and COX regression were employed to analyze the correlation between RAB10 and pathological features of BC. MTT, Transwell, and wound healing assays were conducted to detect BC cell proliferation, invasion, and metastatic ability. Bioinformatics techniques were employed to explore the correlation between RAB10 and BC tumor immune cell infiltration, and to speculate the biological function of RAB10 in BC and related signaling pathways. Our findings suggest that RAB10 expression is elevated in BC and is associated with HER2 status, indicating a poor prognosis for BC patients. RAB10 can promote the proliferation, migration, and invasion ability of BC cells in vitro. RAB10 is also associated with BC immune cell infiltration and interacts with multiple signaling pathways. RAB10 is a potential biomarker or molecular target for BC.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Bioensaio , Neoplasias da Mama/genética , Proliferação de Células , Biologia Computacional , Processos NeoplásicosRESUMO
BACKGROUND/AIMS: Chemoresistance of breast cancer is a growing problem and still a major clinical obstacle to successful treatment in clinical patients. miR-760 was significantly downregulated in chemoresistance breast cancer tissues compared to chemo-sensitive tissues in our previous study. However, the role of miR-760 in modulating drug resistance remains largely unexplored. In this study, we sought to determine the expression pattern of miR-760 targeted mRNAs, and explore their potential functions and participated-pathways in breast cancer drug resistance cells. RESULTS: Compared to parental cell line MCF-7, miR-760 was downregulated by 6.15 folds in MCF-7/Adr cells. The qRT-PCR result showed that compared to miR-760 negative control cells group, miR-760 was up-regulated 15.817 folds after miR-760 lentiviral transfection in miR-760 mimics group. The microarray data showed that 270 genes were dysregulated over 2-fold change in MCF-7/Adr cells after miR-760 overexpressed, including 241 up-regulated and 29 downregulated genes. GO analysis result appeared that the predicted target genes of miR-760 mainly regulated DNA binding, protein binding, molecular function, nucleic acid binding, and so on; the pathway analysis data demonstrated that these target genes mainly involved in cell cycle, TGF-beta signaling pathway, mRNA processing reactome, G protein signaling, apoptosis, Wnt signaling pathway, and other signaling pathways. There were 3 predicted target genes (RHOB, ANGOTL4, ABCA1) of miR-760 were selected at a P value<0.05 and the fold enrichment was>40. CONCLUSION: Our study explored the genes expression pattern after miR-760 overexpresssed, and confirmed 3 dominantly dysregulated genes, which could expand the insights into the miR-760 function and molecular mechanisms in drug resistance of breast cancer. This study might afford a comprehensive understanding of miR-760 as prognostic biomarkers during clinical treatment, and we supposed that the miR-760 expression levels in drug resistance carcinoma tissues could be pursued to develop new strategies for targeted therapies in chemoresistant breast cancer patients.