Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 111: 108-132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35752272

RESUMO

Previously, we showed that extracellular matrices (ECMs), produced ex vivo by various types of stromal cells, direct bone marrow mesenchymal stem cells (BM-MSCs) in a tissue-specific manner and recapitulate physiologic changes characteristic of the aging microenvironment. In particular, BM-MSCs obtained from elderly donors and cultured on ECM produced by young BM stromal cells showed improved quantity, quality and osteogenic differentiation. In the present study, we searched for matrix components that are required for a functional BM-MSC niche by comparing ECMs produced by BM stromal cells from "young" (≤25 y/o) versus "elderly" (≥60 y/o) donors. With increasing donor age, ECM fibrillar organization and mechanical integrity deteriorated, along with the ability to promote BM-MSC proliferation and responsiveness to growth factors. Proteomic analyses revealed that the matricellular protein, Cyr61/CCN1, was present in young, but undetectable in elderly, BM-ECM. To assess the role of Cyr61 in the BM-MSC niche, we used genetic methods to down-regulate the incorporation of Cyr61 during production of young ECM and up-regulate its incorporation in elderly ECM. The results showed that Cyr61-depleted young ECM lost the ability to promote BM-MSC proliferation and growth factor responsiveness. However, up-regulating the incorporation of Cyr61 during synthesis of elderly ECM restored its ability to support BM-MSC responsiveness to osteogenic factors such as BMP-2 and IGF-1. We next examined aging bone and compared bone mineral density and Cyr61 content of L4-L5 vertebral bodies in "young" (9-11 m/o) and "elderly" (21-33 m/o) mice. Our analyses showed that low bone mineral density was associated with decreased amounts of Cyr61 in osseous tissue of elderly versus young mice. Our results strongly demonstrate a novel role for ECM-bound Cyr61 in the BM-MSC niche, where it is responsible for retention of BM-MSC proliferation and growth factor responsiveness, while depletion of Cyr61 from the BM niche contributes to an aging-related dysregulation of BM-MSCs. Our results also suggest new potential therapeutic targets for treating age-related bone loss by restoring specific ECM components to the stem cell niche.


Assuntos
Envelhecimento , Proteína Rica em Cisteína 61 , Células-Tronco Mesenquimais , Osteogênese , Nicho de Células-Tronco , Adulto , Envelhecimento/genética , Animais , Células da Medula Óssea , Diferenciação Celular , Proliferação de Células , Proteína Rica em Cisteína 61/genética , Proteína Rica em Cisteína 61/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Pessoa de Meia-Idade , Proteômica/métodos
2.
FASEB J ; 34(6): 8044-8056, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307751

RESUMO

Islet transplantation in man is limited by multiple factors including islet availability, islet cell damage caused by collagenase during isolation, maintenance of islet function between isolation and transplantation, and allograft rejection. In this study, we describe a new approach for preparing islets that enhances islet function in vitro and reduces immunogenicity. The approach involves culture on native decellularized 3D bone marrow-derived extracellular matrix (3D-ECM), which contains many of the matrix components present in pancreas, prior to islet transplantation. Compared to islets cultured on tissue culture plastic (TCP), islets cultured on 3D-ECM exhibited greater attachment, higher survival rate, increased insulin content, and enhanced glucose-stimulated insulin secretion. In addition, culture of islets on 3D-ECM promoted recovery of vascular endothelial cells within the islets and restored basement membrane-related proteins (eg, fibronectin and collagen type VI). More interestingly, culture on 3D-ECM also selectively decontaminated islets of "passenger" cells (co-isolated with the islets) and restored basement membrane-associated type VI collagen, which were associated with an attenuation in islet immunogenicity. These results demonstrate that this novel approach has promise for overcoming two major issues in human islet transplantation: (a) poor yield of islets from donated pancreas tissue and (b) the need for life-long immunosuppression.


Assuntos
Membrana Basal/fisiologia , Medula Óssea/fisiologia , Matriz Extracelular/fisiologia , Tolerância Imunológica/fisiologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/fisiologia , Animais , Membrana Basal/imunologia , Membrana Basal/metabolismo , Medula Óssea/imunologia , Medula Óssea/metabolismo , Colágeno Tipo VI/imunologia , Colágeno Tipo VI/metabolismo , Matriz Extracelular/imunologia , Matriz Extracelular/metabolismo , Fibronectinas/imunologia , Fibronectinas/metabolismo , Glucose/imunologia , Glucose/metabolismo , Tolerância Imunológica/imunologia , Insulina/imunologia , Insulina/metabolismo , Secreção de Insulina/imunologia , Secreção de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Ratos , Ratos Endogâmicos F344 , Ratos Endogâmicos Lew , Ratos Endogâmicos WF
3.
Stem Cell Res Ther ; 6: 235, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26620283

RESUMO

INTRODUCTION: Bone marrow-derived mesenchymal stem cells (BM-MSCs) for clinical use should not be grown in media containing fetal bovine serum (FBS), because of serum-related concerns over biosafety and batch-to-batch variability. Previously, we described the preparation and use of a cell-free native extracellular matrix (ECM) made by bone marrow cells (BM-ECM) which preserves stem cell properties and enhances proliferation. Here, we compare colony-forming ability and differentiation of MSCs cultured on BM-ECM with a commercially available matrix (CELLstart™) and tissue culture plastic (TCP) under serum-free conditions. METHODS: Primary MSCs from freshly isolated bone marrow-derived mononuclear cells or passaged MSCs (P1) were grown in serum-containing (SCM) or serum-free (SFM) media on BM-ECM, CELLstart™, or TCP substrates. Proliferation, cell composition (phenotype), colony-forming unit replication, and bone morphogenetic protein-2 (BMP-2) responsiveness were compared among cells maintained on the three substrates. RESULTS: Proliferation of primary BM-MSCs was significantly higher in SCM than SFM, irrespectively of culture substrate, suggesting that the expansion of these cells requires SCM. In contrast, passaged cells cultured on BM-ECM or CELLstart™ in SFM proliferated to nearly the same extent as cells in SCM. However, morphologically, those on BM-ECM were smaller and more aligned, slender, and long. Cells grown for 7 days on BM-ECM in SFM were 20-40 % more positive for MSC surface markers than cells cultured on CELLstart™. Cells cultured on TCP contained the smallest number of cells positive for MSC markers. MSC colony-forming ability in SFM, as measured by CFU-fibroblasts, was increased 10-, 9-, and 2-fold when P1 cells were cultured on BM-ECM, CELLstart™, and TCP, respectively. Significantly, CFU-adipocyte and -osteoblast replication of cells grown on BM-ECM was dramatically increased over those on CELLstart™ (2X) and TCP (4-7X). BM-MSCs, cultured in SFM and treated with BMP-2, retained their differentiation capacity better on BM-ECM than on either of the other two substrates. CONCLUSIONS: Our findings indicate that BM-ECM provides a unique microenvironment that supports the colony-forming ability of MSCs in SFM and preserves their stem cell properties. The establishment of a robust culture system, combining native tissue-specific ECM and SFM, provides an avenue for preparing significant numbers of potent MSCs for cell-based therapies in patients.


Assuntos
Diferenciação Celular , Meios de Cultura Livres de Soro , Matriz Extracelular , Células-Tronco Mesenquimais/citologia , Adulto , Proliferação de Células , Humanos , Adulto Jovem
4.
Am J Physiol Heart Circ Physiol ; 305(12): H1830-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24142413

RESUMO

Brain-derived neurotrophic factor (BDNF) increases in failing hearts, but BDNF roles in cardiac remodeling following myocardial infarction (MI) are unclear. Male BDNF(+/+) [wild-type (WT)] and BDNF(+/-) heterozygous (HET) mice at 6-9 mo of age were subjected to MI and evaluated at days 1, 3, 5, 7, or 28 post-MI. At day 28 post-MI, 76% of HET versus 40% of WT survived, whereas fractional shortening improved and neovascularization levels were reduced in the HET (all, P < 0.05). At day 1, post-MI, matrix metalloproteinase-9, and myeloperoxidase (MPO) increased in WT, but not in HET. Concomitantly, monocyte chemotactic protein-1 and -5 levels increased and vascular endothelial growth factor (VEGF)-A decreased in HET. Neutrophil infiltration peaked at days 1-3 in WT mice, and this increase was blunted in HET. To determine if MPO administration could rescue the HET phenotype, MPO was injected at 3 h post-MI. MPO restored VEGF-A levels without altering matrix metalloproteinase-9 or neutrophil content. In conclusion, reduced BDNF levels modulated the early inflammatory and neovascularization responses, leading to improved survival and reduced cardiac remodeling at day 28 post-MI. Thus reduced BDNF attenuates early inflammation following MI by modulating MPO and angiogenic response through VEGF-A.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Coração/fisiopatologia , Inflamação/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Coração/efeitos dos fármacos , Heterozigoto , Inflamação/genética , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Neovascularização Patológica/genética , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Peroxidase/metabolismo , Peroxidase/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
J Mol Cell Cardiol ; 53(5): 599-608, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22884843

RESUMO

Following myocardial infarction (MI), activated macrophages infiltrate into the necrotic myocardium as part of a robust pro-inflammatory response and secrete matrix metalloproteinase-9 (MMP-9). Macrophage activation, in turn, modulates the fibrotic response, in part by stimulating fibroblast extracellular matrix (ECM) synthesis. We hypothesized that overexpression of human MMP-9 in mouse macrophages would amplify the inflammatory and fibrotic responses to exacerbate left ventricular dysfunction. Unexpectedly, at day 5 post-MI, ejection fraction was improved in transgenic (TG) mice (25±2%) compared to the wild type (WT) mice (18±2%; p<0.05). By gene expression profiling, 23 of 84 inflammatory genes were decreased in the left ventricle infarct (LVI) region from the TG compared to WT mice (all p<0.05). Concomitantly, TG macrophages isolated from the LVI, as well as TG peritoneal macrophages stimulated with LPS, showed decreased inflammatory marker expression compared to WT macrophages. In agreement with attenuated inflammation, only 7 of 84 cell adhesion and ECM genes were increased in the TG LVI compared to WT LVI, while 43 genes were decreased (all p<0.05). These results reveal a novel role for macrophage-derived MMP-9 in blunting the inflammatory response and limiting ECM synthesis to improve left ventricular function post-MI.


Assuntos
Macrófagos Peritoneais/enzimologia , Metaloproteinase 9 da Matriz/genética , Infarto do Miocárdio/enzimologia , Função Ventricular Esquerda , Animais , Antígenos de Diferenciação/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Galectina 3/metabolismo , Expressão Gênica , Humanos , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/fisiopatologia , Miofibroblastos/metabolismo , Neutrófilos/patologia , Receptores de Citocinas/genética , Receptores de Citocinas/metabolismo , Volume Sistólico , Transcriptoma
6.
Circ Cardiovasc Genet ; 4(4): 455-62, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21685172

RESUMO

BACKGROUND: We have previously shown that cardiac sarcopenia occurs with age in C57/BL6J mice. However, underlying mechanisms and plasma biomarkers of cardiac aging have not been identified. Accordingly, the objective of this study was to identify and evaluate plasma biomarkers that reflect cardiac aging phenotypes. METHODS AND RESULTS: Plasma from adult (7.5±0.5 months old, n=27) and senescent (31.7±0.5 months old, n=25) C57/BL6J mice was collected, and levels of 69 markers were measured by multi-analyte profiling. Of these, 26 analytes were significantly increased and 3 were significantly decreased in the senescent group compared with the adult group. The majority of analytes that increased in the senescent group were inflammatory markers associated with macrophage functions, including matrix metalloproteinase-9 (MMP-9) and monocyte chemotactic protein-1 (MCP-1/CCL-2). Immunoblotting (n=12/group) showed higher MMP-9 and MCP-1 levels in the left ventricle (LV) of senescent mice (P<0.05), and their expression levels in the LV correlated with plasma levels (ρ=0.50 for MMP-9 and ρ =0.62 for MCP1, P<0.05). Further, increased plasma MCP-1 and MMP-9 levels correlated with the increase in end-diastolic dimensions that occurs with senescence. Immunohistochemistry (n=3/group) for Mac-3, a macrophage marker, showed increased macrophage densities in the senescent LV, and dual-labeling immunohistochemistry of Mac-3 and MMP-9 revealed robust colocalization of MMP-9 to the macrophages in the senescent LV sections, indicating that the macrophage is a major contributor of MMP-9 in the senescent LV. CONCLUSIONS: Our results suggest that MCP-1 and MMP-9 are potential plasma markers for cardiac aging and that augmented MCP-1 and MMP-9 levels and macrophage content in the LV could provide an underlying inflammatory mechanism of cardiac aging.


Assuntos
Envelhecimento , Quimiocina CCL2/sangue , Coração/crescimento & desenvolvimento , Metaloproteinase 9 da Matriz/sangue , Animais , Biomarcadores/sangue , Ventrículos do Coração , Inflamação , Macrófagos , Camundongos , Camundongos Endogâmicos C57BL
7.
Am J Physiol Heart Circ Physiol ; 301(2): H497-505, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21602472

RESUMO

Secreted protein, acidic, and rich in cysteine (SPARC) is a matricellular protein that functions in the extracellular processing of newly synthesized collagen. Collagen deposition to form a scar is a key event following a myocardial infarction (MI). Because the roles of SPARC in the early post-MI setting have not been defined, we examined age-matched wild-type (WT; n=22) and SPARC-deficient (null; n=25) mice at day 3 post-MI. Day 0 WT (n=28) and null (n=20) mice served as controls. Infarct size was 52 ± 2% for WT and 47 ± 2% for SPARC null (P=NS), indicating that the MI injury was comparable in the two groups. By echocardiography, WT mice increased end-diastolic volumes from 45 ± 2 to 83 ± 5 µl (P < 0.05). SPARC null mice also increased end-diastolic volumes but to a lesser extent than WT (39 ± 3 to 63 ± 5 µl; P < 0.05 vs. day 0 controls and vs. WT day 3 MI). Ejection fraction fell post-MI in WT mice from 57 ± 2 to 19 ± 1%. The decrease in ejection fraction was attenuated in the absence of SPARC (65 ± 2 to 28 ± 2%). Fibroblasts isolated from SPARC null left ventricle (LV) showed differences in the expression of 22 genes encoding extracellular matrix and adhesion molecule genes, including fibronectin, connective tissue growth factor (CTGF; CCN2), matrix metalloproteinase-3 (MMP-3), and tissue inhibitor of metalloproteinase-2 (TIMP-2). The change in fibroblast gene expression levels was mirrored in tissue protein extracts for fibronectin, CTGF, and MMP-3 but not TIMP-2. Combined, the results of this study indicate that SPARC deletion preserves LV function at day 3 post-MI but may be detrimental for the long-term response due to impaired fibroblast activation.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Osteonectina/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Análise de Variância , Animais , Western Blotting , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/genética , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ruptura Cardíaca Pós-Infarto/metabolismo , Ruptura Cardíaca Pós-Infarto/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Osteonectina/deficiência , Osteonectina/genética , Volume Sistólico , Fatores de Tempo , Ultrassonografia , Remodelação Ventricular/genética
8.
BMC Syst Biol ; 5: 60, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21545710

RESUMO

BACKGROUND: Progressive remodeling of the left ventricle (LV) following myocardial infarction (MI) can lead to congestive heart failure, but the underlying initiation factors remain poorly defined. The objective of this study, accordingly, was to determine the key factors and elucidate the regulatory mechanisms of LV remodeling using integrated computational and experimental approaches. RESULTS: By examining the extracellular matrix (ECM) gene expression and plasma analyte levels in C57/BL6J mice LV post-MI and ECM gene responses to transforming growth factor (TGF-ß1) in cultured cardiac fibroblasts, we found that key factors in LV remodeling included macrophages, fibroblasts, transforming growth factor-ß1, matrix metalloproteinase-9 (MMP-9), and specific collagen subtypes. We established a mathematical model to study LV remodeling post-MI by quantifying the dynamic balance between ECM construction and destruction. The mathematical model incorporated the key factors and demonstrated that TGF-ß1 stimuli and MMP-9 interventions with different strengths and intervention times lead to different LV remodeling outcomes. The predictions of the mathematical model fell within the range of experimental measurements for these interventions, providing validation for the model. CONCLUSIONS: In conclusion, our results demonstrated that the balance between ECM synthesis and degradation, controlled by interactions of specific key factors, determines the LV remodeling outcomes. Our mathematical model, based on the balance between ECM construction and destruction, provides a useful tool for studying the regulatory mechanisms and for predicting LV remodeling outcomes.


Assuntos
Macrófagos/fisiologia , Remodelação Ventricular/fisiologia , Animais , Células Cultivadas , Biologia Computacional/métodos , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Modelos Teóricos , Infarto do Miocárdio/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Biologia de Sistemas/métodos , Fator de Crescimento Transformador beta1/metabolismo , Resultado do Tratamento
9.
Am J Physiol Heart Circ Physiol ; 300(4): H1418-26, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21297029

RESUMO

Post-myocardial infarction (MI), chemokine homing of inflammatory cells into the injured left ventricle (LV) regulates ventricular remodeling, in part by stimulating the extracellular matrix response. The CC chemokine receptor 5 (CCR5) is a key chemokine receptor expressed on macrophages, and CCR5 ligands are highly upregulated post-MI. We hypothesized that deletion of CCR5 would attenuate adverse remodeling by decreasing inflammatory cell recruitment. Accordingly, we examined LV function, macrophage recruitment and activation, and collagen content in wild-type (WT, n = 25) and CCR5 null (n = 33) mice at 7 days post-MI. Both groups had similar infarct sizes (44 ± 2% in WT and 42 ± 2% in CCR5 null; P = 0.37). However, the LV remodeling index (end diastolic volume/LV mass) increased to a larger extent in CCR5 null (1.28 ± 0.08 µl/mg for CCR5 null and 1.02 ± 0.06 µl/mg for WT; P < 0.05). Although numbers of infiltrated macrophages were similar in WT and CCR5 null mice, CCR5-deficient macrophages isolated from the infarct zone displayed >50% decrease in gene expression levels of proinflammatory activation markers (interleukin-1ß, interleukin-6, and tumor necrosis factor-α), as well as anti-inflammatory activation markers (arginase 1, CD163, mannose receptor, and transforming growth factor-ß1) compared with WT (all P < 0.05). Concomitant with the reduced macrophage activation, heat shock protein-47 and collagen type I precursor levels in the infarct region decreased in the CCR5 null (1.2 ± 0.3 units in the CCR5 null and 2.3 ± 0.4 units in the WT; P < 0.05), while collagen fragments increased (88.3 ± 5.9 units in the CCR5 null and 32.7 ± 8.5 units in the WT; P < 0.05). We conclude that CCR5 deletion impairs LV remodeling by hindering macrophage activation, which stimulates an imbalance in collagen metabolism and increases the remodeling index.


Assuntos
Deleção de Genes , Ativação de Macrófagos/genética , Infarto do Miocárdio/genética , Receptores CCR5/genética , Remodelação Ventricular/genética , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação Mielomonocítica/biossíntese , Arginase/biossíntese , Colágeno Tipo I/biossíntese , Feminino , Proteínas de Choque Térmico HSP47/biossíntese , Interleucina-1beta/biossíntese , Interleucina-6/biossíntese , Lectinas Tipo C/biossíntese , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/biossíntese , Camundongos , Infarto do Miocárdio/patologia , Pró-Colágeno/biossíntese , Receptores CCR5/fisiologia , Receptores de Superfície Celular/biossíntese , Fator de Crescimento Transformador beta1/biossíntese , Fator de Necrose Tumoral alfa/biossíntese , Remodelação Ventricular/fisiologia
10.
Gend Med ; 5(1): 74-85, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18420168

RESUMO

BACKGROUND: Female Dahl salt-sensitive (DS) rats fed a low-salt diet develop hypertension at 6 months of age. Ovariectomy at 2 months of age accelerates the development of hypertension, and estrogen replacement delays it. Although acute pressure overload induces structural changes in the left ventricle (LV) further effects of gradual hypertension on LV remodeling have not been examined in the DS rat model. OBJECTIVE: The purpose of this study was to test the hypothesis that aging and estrogen loss in hypertensive DS rats are accompanied by changes in LV remodeling. METHODS: Four groups of DS rats were examined: young intact, middle-aged (MA) intact, MA ovariectomized (MA-OVX), and MA-OVX with 17beta-eestradiol (E(2)) supplementation (MA-OVX+E(2)). Myocardial matrix metalloproteinases (MMPs),tissue inhibitors of metalloproteinases (TIMPs),and extracellular matrix (ECM) proteins were assessed by immunoblotting. RESULTS: Each of the 4 groups comprised 6 animals. Mean (SEM) LV mass was significantly greater in the MA-intact and the MA-OVX groups (1257 [31] mg and 1199 [25] mg, respectively; both, P < 0.05) compared with the young-intact group (697 [6] mg). LV mass in the MA-OVX+E(2) group was significantly lower compared with the MA-intact and MA-OVX groups (both, P < 0.05), suggesting that estrogen may attenuate LV remodeling. Fibronectin and collagen III and IV concentrations increased significantly in the MA-intact and MA-OOVX groups (all, P < 0.05),indicating increased fibrosis. Multiple MMPs also increased in the MA-intact an nd MA-OVX rats, including MMP-3, -7, -99, -113, and -114, and all TIMPs. In contrast, estrogen attenuated fibrosis by increasing MMP-8 concentrations and increasing collagen III fragments. From good-fit regression modeling, MMP-13 and MMP-14 concentrations correlated positively with LV mass for the MA-intact and MA-OVX groups, respectively. CONCLUSIONS: Gradual hypertension stimulated ECM turnover by increasing both MMP/TIMP production and ECM degradation. Estrogen loss or gain resulted in a shift in MMP profiles, suggesting that MMP-13 and MMP-14 may be differentially regulated in postmenopausal hypertension.


Assuntos
Estrogênios/farmacologia , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Inibidores Teciduais de Metaloproteinases/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Dieta Hipossódica , Estrogênios/fisiologia , Feminino , Expressão Gênica , Hipertensão/induzido quimicamente , Ovariectomia , Pós-Menopausa , Ratos , Ratos Endogâmicos Dahl
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA