Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Mol Immunol ; 21(3): 292-308, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287103

RESUMO

CD8+ T-cell exhaustion is a state of dysfunction that promotes tumor progression and is marked by the generation of Slamf6+ progenitor exhausted (Texprog) and Tim-3+ terminally exhausted (Texterm) subpopulations. Inhibitor of DNA binding protein 2 (Id2) has been shown to play important roles in T-cell development and CD8+ T-cell immunity. However, the role of Id2 in CD8+ T-cell exhaustion is unclear. Here, we found that Id2 transcriptionally and epigenetically regulates the generation of Texprog cells and their conversion to Texterm cells. Genetic deletion of Id2 dampens CD8+ T-cell-mediated immune responses and the maintenance of stem-like CD8+ T-cell subpopulations, suppresses PD-1 blockade and increases tumor susceptibility. Mechanistically, through its HLH domain, Id2 binds and disrupts the assembly of the Tcf3-Tal1 transcriptional regulatory complex, and thus modulates chromatin accessibility at the Slamf6 promoter by preventing the interaction of Tcf3 with the histone lysine demethylase LSD1. Therefore, Id2 increases the abundance of the permissive H3K4me2 mark on the Tcf3-occupied E-boxes in the Slamf6 promoter, modulates chromatin accessibility at the Slamf6 promoter and epigenetically regulates the generation of Slamf6+ Texprog cells. An LSD1 inhibitor GSK2879552 can rescue the Id2 knockout phenotype in tumor-bearing mice. Inhibition of LSD1 increases the abundance of Slamf6+Tim-3- Texprog cells in tumors and the expression level of Tcf1 in Id2-deleted CD8+ T cells. This study demonstrates that Id2-mediated transcriptional and epigenetic modification drives hierarchical CD8+ T-cell exhaustion, and the mechanistic insights gained may have implications for therapeutic intervention with tumor immune evasion.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Camundongos , Animais , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Exaustão das Células T , Neoplasias/patologia , Histona Desmetilases/metabolismo , Cromatina/metabolismo
2.
Heliyon ; 9(9): e19400, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37681153

RESUMO

Objectives: To evaluate a two-test strategy for HIV screening in the low-prevalence population and to assess the feasibility of utilizing the optimal signal-to-cutoff (S/CO) threshold on the chemiluminescence immunoassay(CMIA) and an additional rapid test on the gold immune-chromatography assay (GICA) for screening positive patients and optimization of clinical management. Methods: We conducted a retrospective study of samples analyzed by the fourth-generation Architect HIV Ag/Ab combo assay (CMIA) in a large medical center between June 2017 and August 2020. Reactive samples underwent a second screening test using the rapid test GICA, followed by Western blot (WB) as the confirmatory test. Receiver operating characteristic (ROC) curve analysis was used to determine the optimal S/CO. We calculated sensitivity, specificity, and predictive value based on our population. The performance of the single-test strategy (CMIA) was compared with that of the two-test strategy (CMIA and GICA). Logistic regression was used to analyze the factors of clinical characteristics leading to false positive results. Results: A total of 220558 samples were screened by CMIA, and 429 patients met the inclusion criteria. Of these, CMIA produced 199 false-positive results with a median S/CO of 1.93(IQR1.45-3.68) and 230 positive results with a median S/CO of 455.1 (IQR169.3-709.7). The optimal S/CO of the single-test strategy was 8.82, which achieved a sensitivity of 100% and a positive predictive value (PPV) of 90.9%. The two-test strategy (CMIA and GICA) provided a sensitivity of 100% and a PPV of 98.7%, which best correlated with the confirmatory test WB. The combination of S/CO 8.82 on the CMIA assay and additional test results of GICA can be defined as four types used to interpret HIV serostatus. The false positive rate (FPR) was high in the female, the age≤18 group, the pre-operative patients, and the patients from the clinical departments of Pediatrics, Gynecology and Obstetrics, and Oncology, etc. Conclusions: The false positive rate is high in the low-prevalence setting by using CMIA. The two-test strategy (CMIA and GICA) is recommended for HIV screening in hospitals. Hopefully, the clinicians will be able to interpret HIV serostatus and facilitate clinical decision-making while waiting for the confirmatory results.

3.
Neuroscience ; 514: 67-78, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36738913

RESUMO

The pathophysiological process of neuronal injury due to cerebral ischemia is complex among which disturbance of calcium homeostasis and autophagy are two major pathogenesis. However, it remains ambiguous whether the two factors are independent. Stromal interaction molecule 1 (STIM1) is the most important Ca2+ sensor mediating the store-operated Ca2+ entry (SOCE) through interacting with Orai1 and has recently been proven to participate in autophagy in multiple cells. In this study, we aimed to investigate the potential role of STIM1-induced SOCE on autophagy and whether its regulator function contributes to neuronal injury under hypoxic conditions using in vivo transient middle cerebral artery occlusion (tMCAO) model and in vitro oxygen and glucose deprivation (OGD) primary cultured neuron model respectively. The present data indicated that STIM1 induces autophagic flux impairment in neurons through promoting SOCE and inhibiting AKT/mTOR signaling pathway. Pharmacological inhibition of SOCE or downregulation of STIM1 with siRNA suppressed the autophagic activity in neurons. Moreover, stim1 knockdown attenuated neurological deficits and brain damage after tMCAO, which could be reversed by AKT/mTOR pathway inhibitor AZD5363. Together, the modulation of STIM1 on autophagic activation indicated the potential link between Ca2+ homeostasis and autophagy which provided evidence that STIM1 could be a promising therapeutic target for ischemic stroke.


Assuntos
Cálcio , AVC Isquêmico , Autofagia , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais
4.
Nutrients ; 15(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771436

RESUMO

BACKGROUND: Increasingly, studies have discovered that different fatty acids (Fas) are linked to colorectal cancer (CRC) risk. METHODS: We systematically searched Embase and Medline databases to identify eligible studies that examined the associations of different types of Fas with CRC risk. The effect estimates and their 95% confidence intervals (Cis) were pooled using a random-effects model. Subgroup and sensitivity analyses were performed to examine the robustness of the study findings. RESULTS: This study evaluated the associations of 28 dietary and 18 blood Fas with CRC risk by summarizing the most updated evidence from 54 observational and four Mendelian Randomization (MR) studies. The present findings suggested that high dietary intake of eicosapentaenoic acid (EPA), docosahexanoic acid (DHA), and docosapentaenoic acid (DPA) are related to low risk of CRC, while the n-6/n-3 PUFA ratio and trans-FA are related to high risk of CRC. The summary of all cohort studies found that a high intake of SFA and DHA was a protective factor for CRC, and a high intake of the n-6/n-3 PUFA ratio was a risk factor for CRC. In the subgroup analysis of cancer subsites, we found that the dietary intake of linoleic acid (LA) and trans-FA are risk factors, while DPA is a protective factor for colon cancer. High dietary DHA intake was associated with a lower risk of rectal cancer, while the dietary n-6/n-3 PUFA ratio was associated with a higher risk of rectal cancer. Meta-analysis of blood FA levels showed a significant reverse association between blood pentadecanoic acid and CRC risk, whilst other blood Fas showed no significant association with CRC risk. All included MR studies showed that high plasma arachidonic acid (AA) is associated with increased CRC risk. CONCLUSIONS: Current evidence on the dietary intake and blood levels of Fas in relation to CRC risk is less consistent. Future studies are needed to investigate how the metabolism of Fas contributes to CRC development.


Assuntos
Neoplasias Colorretais , Ácidos Graxos Ômega-3 , Neoplasias Retais , Humanos , Ácidos Graxos , Ingestão de Alimentos , Fatores de Risco , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/etiologia , Estudos Observacionais como Assunto
5.
Cell Mol Neurobiol ; 43(6): 2871-2882, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36786945

RESUMO

Intracerebral hemorrhage (ICH) is a devastating stroke type with high mortality and disability. Inflammatory response induced by macrophages/microglia (M/Ms) activation is one of the leading causes of brain damage after ICH. The anti-inflammatory effects of resveratrol (RSV) have already been evaluated in several models of central nervous system disease. Therefore, we designed the current study to assess the role of RSV in ICH and explore its downstream mechanism related to Sirt3. The autologous artery blood injection was administrated to create an ICH mouse model. M/Ms-specific Sirt3 knockout Sirt3f/f; CX3CR1-Cre (Sirt3 cKO) mouse was used to evaluate the role of Sirt3 on RSV treatment. Neuronal function and hematoma volume were assessed to indicate brain damage. The pro-inflammatory marker (CD16) and cytokine (TNF) were measured to evaluate the inflammatory effects. Our results showed that RSV treatment alleviates neurological deficits, reduces cell death, and increases hematoma clearance on day 7 after ICH. In addition, RSV effectively suppressed CD16+ M/Ms activation and decreased TNF release. In Sirt3 cKO mice, the protective effects of RSV were abolished, indicating the potential mechanism of RSV was partially due to Sirt3 signaling activation. Therefore, RSV could be a promising candidate and therapeutic agent for ICH and Sirt3 could be a potential target to inhibit inflammation.


Assuntos
Lesões Encefálicas , Sirtuína 3 , Camundongos , Animais , Microglia/metabolismo , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Hemorragia Cerebral/complicações , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/metabolismo , Macrófagos , Lesões Encefálicas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Hematoma
6.
Elife ; 112022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36250974

RESUMO

Background: Epidemiological studies observed gender differences in COVID-19 outcomes, however, whether sex hormone plays a causal in COVID-19 risk remains unclear. This study aimed to examine associations of sex hormone, sex hormones-binding globulin (SHBG), insulin-like growth factor-1 (IGF-1), and COVID-19 risk. Methods: Two-sample Mendelian randomization (TSMR) study was performed to explore the causal associations between testosterone, estrogen, SHBG, IGF-1, and the risk of COVID-19 (susceptibility, hospitalization, and severity) using genome-wide association study (GWAS) summary level data from the COVID-19 Host Genetics Initiative (N=1,348,701). Random-effects inverse variance weighted (IVW) MR approach was used as the primary MR method and the weighted median, MR-Egger, and MR Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test were conducted as sensitivity analyses. Results: Higher genetically predicted IGF-1 levels have nominally significant association with reduced risk of COVID-19 susceptibility and hospitalization. For one standard deviation increase in genetically predicted IGF-1 levels, the odds ratio was 0.77 (95% confidence interval [CI], 0.61-0.97, p=0.027) for COVID-19 susceptibility, 0.62 (95% CI: 0.25-0.51, p=0.018) for COVID-19 hospitalization, and 0.85 (95% CI: 0.52-1.38, p=0.513) for COVID-19 severity. There was no evidence that testosterone, estrogen, and SHBG are associated with the risk of COVID-19 susceptibility, hospitalization, and severity in either overall or sex-stratified TSMR analysis. Conclusions: Our study indicated that genetically predicted high IGF-1 levels were associated with decrease the risk of COVID-19 susceptibility and hospitalization, but these associations did not survive the Bonferroni correction of multiple testing. Further studies are needed to validate the findings and explore whether IGF-1 could be a potential intervention target to reduce COVID-19 risk. Funding: We acknowledge support from NSFC (LR22H260001), CRUK (C31250/A22804), SHLF (Hjärt-Lungfonden, 20210351), VR (Vetenskapsrådet, 2019-00977), and SCI (Cancerfonden).


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , COVID-19/epidemiologia , COVID-19/genética , Estrogênios , Hormônios Esteroides Gonadais , Hospitalização , Humanos , Fator de Crescimento Insulin-Like I/genética , Polimorfismo de Nucleotídeo Único , Testosterona
7.
Front Pediatr ; 10: 892456, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147813

RESUMO

Background: The clinical benefit of surgery for the treatment of cerebral cavernous malformation (CCM)-related epilepsy in pediatric patients is still controversial. Although surgical treatment of CCM-related epilepsy in children is widely recognized, the clinical benefits of controlling the seizure rate must be balanced against the risk of leading to perioperative morbidity. Methods: We conducted a comprehensive search to identify relevant studies via Ovid Medline, Web of Science and PubMed (January 1995-June 2020). The following search terms were used: "hemangioma, cavernous, central nervous system," "brain cavernous hemangioma," "cerebral cavernous hemangioma," "CCM," "epilepsy," and "seizures." The seizure control rate and the risk of postoperative adverse outcomes along with their 95% confidence intervals (CIs) were calculated. Results: A total of 216 patients across 10 studies were included in meta-analysis. The results showed that the control rate of epilepsy was 88% (95% CI: 76-95%). Four percent (95% CI: 2-10%) of the patients experienced temporary symptomatic adverse effects following surgical resection, and 3% (95% CI: 0-26%) of the patients developed permanent symptomatic adverse effects in the long-term follow-up after surgical excision of the CCMs. None of the patients died as a result of the CCMs or surgical treatment. Conclusion: Surgery is an effective and safe treatment for CCM -related epilepsy in pediatric patients with a low risk of postoperative complications and death.

8.
CNS Neurosci Ther ; 28(11): 1800-1813, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35876247

RESUMO

INTRODUCTION: Intracerebral hemorrhage (ICH) causes devastating morbidity and mortality, and studies have shown that the toxic components of hematomas play key roles in brain damage after ICH. Recent studies have found that TLR9 participates in regulating the phagocytosis of peripheral macrophages. The current study examined the role of TLR9 in macrophage/microglial (M/M) function after ICH. METHODS: RAW264.7 (macrophage), BV2 (microglia), and HT22# (neurons) cell lines were transfected with lentivirus for TLR9 overexpression. Whole blood from C57BL/6 or EGFPTg/+ mice was infused for phagocytosis and injury experiments, and brusatol was used for the experiments. Intraperitoneal injection of the TLR9 agonist ODN1826 or control ODN2138 was performed on days 1, 3, 5, 7, and 28 after ICH to study the effects of TLR9 in mice. In addition, clodronate was coinjected in M/M elimination experiments. The brains were collected for histological and protein experiments at different time points after ICH induction. Cellular and histological methods were used to measure hematoma/iron residual, M/Ms variation, neural injury, and brain tissue loss. Behavioral tests were performed premodeling and on days 1, 3, 7, and 28 post-ICH. RESULTS: Overexpression of TLR9 facilitated M/M phagocytosis and protected neurons from blood-derived hazards in vitro. Furthermore, ODN1826 boosted M/M activation and phagocytic function, facilitated hematoma/iron resolution, reduced brain injury, and improved neurological function recovery in ICH mice, which were abolished by clodronate injection. The experimental results indicated that the Nrf2/CD204 pathway participated in TLR9-induced M/M phagocytosis after ICH. CONCLUSION: Our study suggests a protective role for TLR9-enhanced M/M phagocytosis via the Nrf2/CD204 pathway after ICH. Our findings may serve as potential targets for ICH treatment.


Assuntos
Lesões Encefálicas , Microglia , Animais , Lesões Encefálicas/patologia , Hemorragia Cerebral/metabolismo , Ácido Clodrônico/metabolismo , Hematoma/metabolismo , Ferro/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fagocitose , Receptor Toll-Like 9/metabolismo
9.
J Cell Mol Med ; 26(8): 2230-2250, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35194922

RESUMO

With the emergence of the molecular era and retreat of the histology epoch in malignant glioma, it is becoming increasingly necessary to research diagnostic/prognostic/therapeutic biomarkers and their related regulatory mechanisms. While accumulating studies have investigated coding gene-associated biomarkers in malignant glioma, research on comprehensive coding and noncoding RNA-associated biomarkers is lacking. Furthermore, few studies have illustrated the cross-talk signalling pathways among these biomarkers and mechanisms in detail. Here, we identified DEGs and ceRNA networks in malignant glioma and then constructed Cox/Lasso regression models to further identify the most valuable genes through stepwise refinement. Top-down comprehensive integrated analysis, including functional enrichment, SNV, immune infiltration, transcription factor binding site, and molecular docking analyses, further revealed the regulatory maps among these genes. The results revealed a novel and accurate model (AUC of 0.91 and C-index of 0.84 in the whole malignant gliomas, AUC of 0.90 and C-index of 0.86 in LGG, and AUC of 0.75 and C-index of 0.69 in GBM) that includes twelve ncRNAs, 1 miRNA and 6 coding genes. Stepwise logical reasoning based on top-down comprehensive integrated analysis and references revealed cross-talk signalling pathways among these genes that were correlated with the circadian rhythm, tumour immune microenvironment and cellular senescence pathways. In conclusion, our work reveals a novel model where the newly identified biomarkers may contribute to a precise diagnosis/prognosis and subclassification of malignant glioma, and the identified cross-talk signalling pathways would help to illustrate the noncoding RNA-associated epigenetic regulatory mechanisms of glioma tumorigenesis and aid in targeted therapy.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Simulação de Acoplamento Molecular , RNA Longo não Codificante/genética , Microambiente Tumoral/genética
10.
ACS Omega ; 6(7): 5009-5018, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33644609

RESUMO

A semianalytical coupled reservoir/wellbore model based on the volumetric source for horizontal wells of sulfur gas reservoirs is presented, which considers sulfur deposition and permeability heterogeneity. Compared to the results without considering the sulfur deposition effect, the results of this paper model is better fitted to field production data and average relative errors of two simulated results are 8.37% (considering sulfur deposition) and 23.38% (not considering sulfur deposition). Based on the model, we perform sensitivity in terms of various sulfur depositions, producing pressure drop, and permeability contrast. Results show that the production decreases with increased sulfur deposition, and the flow rate along the wellbore in the horizontal well decreases because of sulfur deposition. The production without and with sulfur deposition increases with increased producing pressure drop, while the production without sulfur deposition is higher. Also, higher producing pressure drop causes a higher nonuniform inflow profile along the horizontal well. Sulfur deposition can reduce a nonuniform biased inflow profile along the horizontal well in heterogeneous sulfur gas reservoirs, but the horizontal well production is reduced. Therefore, sulfur deposition is crucial for the production prediction and inflow profile along the horizontal well in heterogeneous sulfur gas reservoirs.

11.
Front Neurol ; 12: 600461, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33574793

RESUMO

Background: Brainstem cavernous malformations (BSCMs) are a subset of cerebral cavernous malformations with precarious locations and potentially devastating clinical courses. The effects and outcomes of treating BSCMs by microsurgery or gamma knife radiosurgery (GKRS) vary across studies. Methods: We searched the Medline, Web of Science, The Cochrane Library, PubMed, and China Biology Medicine disc databases for original articles published in peer-reviewed journals of cohort studies reporting on 20 or more patients of any age with BSCMs with at least 80% completeness of follow-up. Results: We included 43 cohorts involving 2,492 patients. Both microsurgery (RR = 0.04, 95% CI 0.01-0.16, P < 0.01) and GKRS (RR = 0.11, 95% CI 0.08-0.16, P < 0.01) demonstrated great efficacy in reducing the rehemorrhage rate after treatment for BSCMs. The incidence rates of composite outcomes were 19.8 (95% CI 16.8-22.8) and 15.7 (95% CI 11.7-19.6) after neurosurgery and radiosurgery, respectively. In addition, we found statistically significant differences in the median numbers of patients between neurosurgical and radiosurgical cohorts in terms of symptomatic intracranial hemorrhage (ICH; neurosurgical cohorts: median 0, range 0-33; radiosurgical cohorts: median 4, range 1-14; P < 0.05) and persistent focal neurological deficit (FND; neurosurgical cohorts: median 5, range 0-140; radiosurgical cohorts: median 1, range 0-3; P < 0.05). Conclusions: The reported effects of treating BSCMs by microsurgery or GKRS are favorable for reducing recurrent hemorrhage from BSCMs. Patients in the neurosurgery cohort had a lower incidence of symptomatic ICH, while patients in the radiosurgical cohort had a lower incidence of persistent FND.

12.
ACS Omega ; 6(1): 615-622, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33458513

RESUMO

Fracturing measures are common practice for horizontal wells of tight oil reservoirs. Thus, production estimation is a significant problem that should be solved. However, previous models for the production of fractured horizontal wells of tight oil reservoirs have some problems. In this paper, we present a semi-analytical model based on the volumetric source method to simulate production from nonplanar fracture geometry in a tight oil reservoir. First, we developed an analytical model based on the volumetric source method in nonplanar fracture geometry with varying widths. Second, the model was coupled with fracture flow and solved by the Gauss-Seidel iteration. Third, the semi-analytical model was verified by a numerical reservoir simulator. Finally, sensitivity analysis was conducted for several critical parameters. Results of validations showed good agreement between this paper's model and the numerical reservoir simulator. The results from the sensitivity analysis showed that (1) production increases with an increased number of fracture segments; (2) production drops more quickly with a smaller fracture half-length in the first stage, and it drops slowly with a smaller fracture half-length in the second stage; (3) cumulative production increases more quickly with a bigger fracture conductivity; and (4) cumulative oil production from a fracture with a constant width and without stress sensitivity coefficient is smaller than that from a fracture with varying widths and with stress sensitivity coefficient. This research provides a basis and reference for production estimation in tight oil reservoirs.

13.
Transl Stroke Res ; 12(5): 858-865, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33094829

RESUMO

Intracerebral hemorrhage (ICH) is a stroke subtype with high mortality and severe morbidity. Hemorrhages frequently develop within the white matter, but whether white matter fibers within the hematoma survive after ICH has not been well studied. The current study examines whether white matter fibers persist in the hematoma after ICH, fibers that might be impacted by evacuation, and their relationship to macrophage infiltration in a porcine model. Male piglets had 2.5 ml blood with or without CD47 blocking antibody injected into the right frontal lobe. Brains were harvested from 3 days to 2 months after ICH for brain histology. White matter fibers were detected within the hematoma 3 and 7 days after hemorrhage by brain histology and myelin basic protein immunohistochemistry. White matter still remained in the hematoma cavity at 2 months after ICH. Macrophage scavenger receptor-1 positive macrophages/microglia and heme oxygenase-1 positive cells infiltrated into the hematoma along the intra-hematomal white matter fibers at 3 and 7 days after ICH. Treatment with CD47 blocking antibody enhanced the infiltration of these cells. In conclusion, white matter fibers exist within the hematoma after ICH and macrophages/microglia may use such fibers as a scaffold to infiltrate into the hematoma and aid in hematoma clearance.


Assuntos
Substância Branca , Animais , Hemorragia Cerebral , Hematoma/etiologia , Macrófagos , Masculino , Microglia , Suínos
14.
Front Neurol ; 11: 590589, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193057

RESUMO

Background: Cerebral cavernous malformations (CCMs) presenting with seizures can be treated with neurosurgery or radiosurgery, but the ideal treatment remains unclear. Currently, there is no adequate randomized controlled trial comparing surgical treatment and radiotherapy for epileptogenic CCMs. Therefore, we conducted a systematic review and meta-analysis of available data from published literature to compare the efficacy and safety of neurosurgery and radiosurgery for epileptogenic CCMs. Methods: We performed a comprehensive search of the Ovid MEDLINE, Web of Science, PubMed, China Biological Medicine and China National Knowledge Infrastructure databases for studies published between January 1994 and October 2019. The search terms were as follows: "epilepsy," "seizures," "brain cavernous hemangioma," "cerebral cavernous malformation," "cerebral cavernous hemangioma," "hemangioma, cavernous, central nervous system." Two researchers independently extracted the data and reviewed all the articles. We compared the advantages and disadvantages of the two treatments. Results: A total of 45 studies were included in our analysis. Overall, the seizure control rate was 79% (95% CI: 75-83%) for neurosurgery and 49% (95% CI: 38-59%) for radiosurgery. In the neurosurgery studies, 4.4% of patients experienced permanent morbidity, while no patients in the radiotherapy studies had permanent morbidity. In addition, the results of subgroup analysis showed that ethnicity, CCMs location and average lesion number are likely significant factors influencing the seizure outcome following treatment. Conclusions: The epilepsy control rate after neurosurgery was higher than that after radiosurgery, but neurosurgery also had a relatively higher rate of permanent morbidity.

15.
Exp Cell Res ; 384(1): 111547, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472117

RESUMO

Traumatic brain injury (TBI) is common and often fatal in current times. The role of poly(adenosine diphosphate-ribose) polymerase (PARP)-induced cell death (parthanatos) in TBI has not been well studied. Our past study showed that oxidative stress-induced cell death includes parthanatos by confirming the occurrence of PARP activation and nuclear translocation of apoptosis-inducing factor (AIF). As oxidative stress plays a key role in pathological progression after TBI, we believe TBI may also be alleviated by the expression of Iduna, which is the only known endogenous regulator of parthanatos. Thus, a transection model in HT-22 cells was established for present study. Downregulation of Iduna aggravated the cell damage caused by mechanical cell injury, whereas upregulation of Iduna reduced mitochondrial dysfunction induced by mechanical cell injury but exerted no effect on apoptosis associated with mitochondrial dysfunction. By contrast, Iduna prevented parthanatos by reducing PARP activation and nuclear translocation of AIF. We also investigated 2 novel p53-MDM2 pathway inhibitors, AMG 232 and Nutlin-3, which substantially reduced the protective effects of Iduna. These findings indicate that Iduna might prevent TBI by specifically inhibiting parthanatos and promoting mitochondrial function, with the p53-MDM2 pathway playing a critical role.


Assuntos
Parthanatos/fisiologia , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/fisiologia , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Apoptose/fisiologia , Fator de Indução de Apoptose/metabolismo , Morte Celular/fisiologia , Linhagem Celular , Regulação para Baixo/fisiologia , Camundongos , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Poli(ADP-Ribose) Polimerases/metabolismo
16.
Neurobiol Dis ; 126: 76-84, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29879529

RESUMO

Brain iron overload is involved in brain injury after intracerebral hemorrhage (ICH). There is evidence that systemic administration of minocycline reduces brain iron level and improves neurological outcome in experimental models of hemorrhagic and ischemic stroke. However, there is evidence in cerebral ischemia that minocycline is not protective in aged female animals. Since most ICH research has used male models, this study was designed to provide an overall view of ICH-induced iron deposits at different time points (1 to 28 days) in aged (18-month old) female Fischer 344 rat ICH model and to investigate the neuroprotective effects of minocycline in those rats. According to our previous studies, we used the following dosing regimen (20 mg/kg, i.p. at 2 and 12 h after ICH onset followed by 10 mg/kg, i.p., twice a day up to 7 days). T2-, T2⁎-weighted and T2⁎ array MRI was performed at 1, 3, 7 and 28 days to measure brain iron content, ventricle volume, lesion volume and brain swelling. Immunohistochemistry was used to examine changes in iron handling proteins, neuronal loss and microglial activation. Behavioral testing was used to assess neurological deficits. In aged female rats, ICH induced long-term perihematomal iron overload with upregulated iron handling proteins, neuroinflammation, brain atrophy, neuronal loss and neurological deficits. Minocycline significantly reduced ICH-induced perihematomal iron overload and iron handling proteins. It further reduced brain swelling, neuroinflammation, neuronal loss, delayed brain atrophy and neurological deficits. These effects may be linked to the role of minocycline as an iron chelator as well as an inhibitor of neuroinflammation.


Assuntos
Lesões Encefálicas/patologia , Hemorragia Cerebral/patologia , Sobrecarga de Ferro/patologia , Minociclina/farmacologia , Fármacos Neuroprotetores/farmacologia , Envelhecimento , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/etiologia , Hemorragia Cerebral/complicações , Feminino , Sobrecarga de Ferro/etiologia , Ratos , Ratos Endogâmicos F344
17.
Cell Physiol Biochem ; 38(2): 635-45, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26849376

RESUMO

BACKGROUND/AIMS: The nucleolar 58-kDa microspherule protein (MSP58) has important transcriptional regulation functions and plays a crucial role in the tumorigenesis and progression of cancers. 3'-deoxy-3'-[18F]fluorothymidine (FLT) has emerged as a promising positron emission tomography (PET) tracer for evaluating tumor malignancy and cell proliferation. METHODS: In the present study, the expression of MSP58 was evaluated by immunohistochemistry and the corresponding PET image was examined using FLT-PET in 55 patients with various grades of gliomas. RESULTS: The immunoreactivity score (IRS) of MSP58 increased with tumor grade with grade IV gliomas exhibiting the highest expression and showed a highly significant positive correlation with the Ki-67 index (r = 0.65, P < 0.001). The IRS of MSP58 in the tumor showed a highly significant positive correlation with corresponding FLT uptake value (r = 0.61, P < 0.001). The correlation between MSP58 expression and glioma malignancy was also confirmed by immunofluorescence, RT-PCR and western blot analysis. FLT uptake value also exhibited a highly significant positive correlation with the Ki-67 index (r = 0.59, P < 0.001). Kaplan-Meier analysis revealed that MSP58 expression has a significant prognostic ability for the overall survival time similar to that found in the uptake value of FLT-PET. CONCLUSION: These results indicate that MSP58 plays an important role in cell proliferation and will be one of the potential candidates of molecular therapy targeting proliferation. FLT-PET might be used as an early measure of treatment response in the proliferation-targeted therapy.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioma/patologia , Proteínas Nucleares/análise , Proteínas de Ligação a RNA/análise , Adolescente , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Criança , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico por imagem , Glioma/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Tomografia por Emissão de Pósitrons , Proteínas de Ligação a RNA/genética , Análise de Sobrevida , Adulto Jovem
18.
Int J Mol Med ; 34(4): 1159-68, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25090966

RESUMO

Sirtuins (Sirt) are a family of phylogenetically conserved nicotinamide adenine nucleotide (NAD(+))-dependent protein deacetylases, among which Sirt3 resides primarily in the mitochondria and serves as a stress responsive deacetylase, playing a role in protecting cells from damage under stress conditions. The present study aimed to investigate the role of Sirt3 in hydrogen peroxide (H(2)O(2))-induced oxidative neuronal injury in HT22 mouse hippocampal cells. Treatment with H(2)O(2) increased the expression of Sirt3 in a dose- and time-dependent manner, and the knockdown of Sirt3 using specific small interfering RNA (siRNA) exacerbated the H(2)O(2)-induced neuronal injury. The overexpression of Sirt3 induced by lentiviral transfection significantly reduced the generation of reactive oxygen species (ROS) and lipid peroxidation following injury, whereas the activities of endogenous antioxidant enzymes were not affected. Further experiments revealed that the H(2)O(2)-induced inhibition of mitochondrial complex activity and adenosine triphosphate (ATP) synthesis, the decrease in mitochondrial Ca(2+) buffering capacity and mitochondrial swelling were all partly reversed by Sirt3. Furthermore, the overexpression of Sirt3 attenuated the release of cytochrome c, the increase in the Bax/Bcl-2 ratio, as well as caspase-9/caspase-3 activity induced by H(2)O(2), and eventually inhibited apoptotic neuronal cell death. These results suggest that Sirt3 acts as a prosurvival factor, playing an essential role in protecting HT22 cells under H(2)O(2)-induced oxidative stress, possibly by inhibiting ROS accumulation and the activation of the mitochondrial apoptotic pathway.


Assuntos
Peróxido de Hidrogênio/toxicidade , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Sirtuína 3/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Peroxidação de Lipídeos/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos
19.
Int J Mol Sci ; 15(6): 10892-907, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24941251

RESUMO

Glutamate-mediated toxicity is implicated in various neuropathologic conditions, and activation of ionotropic and metabotropic glutamate receptors is considered to be the most important mechanism. It has been reported that pharmacological saturation of metabotropic glutamate receptors (mGluRs) can facilitate N-methyl-D-aspartate receptor (NMDAR) related signaling cascades, but the mechanism leading to mGluR-NMDAR interactions in excitotoxic neuronal injury has remained unidentified. In the present study, we investigated the role of mGluR5 in the regulation of N-methyl-D-aspartate (NMDA)-induced excitotoxicity in differentiated PC12 cells. We found that activation of mGluR5 with the specific agonist R,S-2-chloro-5-hydroxyphenylglycine (CHPG) increased cell viability and inhibited lactate dehydrogenase (LDH) release in a dose-dependent manner. CHPG also inhibited an increase in the Bax/Bcl-2 ratio, attenuated cleavage of caspase-9 and caspase-3, and reduced apoptotic cell death after NMDA treatment. The NMDA-induced mitochondrial dysfunction, as indicated by mitochondrial reactive oxygen species (ROS) generation, collapse of mitochondrial membrane potential (MMP), and cytochrome c release, was also partly prevented by CHPG treatment. Furthermore, CHPG blocked the NMDA-induced interaction of NMDAR with postsynaptic density protein-95 (PSD-95), but had no effects on intracellular calcium concentrations. All these results indicated that activation of mGluR5 protects differentiated PC12 cells from NMDA-induced neuronal excitotoxicity by disrupting NMDAR-PSD-95 interaction, which might be an ideal target for investigating therapeutic strategies in various neurological diseases where excitotoxicity may contribute to their pathology.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Proteína 4 Homóloga a Disks-Large , Glicina/análogos & derivados , Glicina/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , N-Metilaspartato/toxicidade , Células PC12 , Fenilacetatos/farmacologia , Ligação Proteica , Ratos , Espécies Reativas de Oxigênio/metabolismo , Receptor de Glutamato Metabotrópico 5/agonistas , Estereoisomerismo
20.
Cell Mol Neurobiol ; 33(7): 921-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23842993

RESUMO

Salvianolic acid B (SalB), the main water-soluble bioactive compounds isolated from the traditional Chinese medical herb Danshen, has been shown to exert anti-cancer effect in several cancer cell lines. The aim of our study was to investigate the potential anti-cancer effect of SalB in human glioma U87 cells. We found that treatment with SalB significantly decreased cell viability of U87 cells in a dose- and time-dependent manner. SalB also enhanced the intracellular ROS generation and induced apoptotic cell death in U87 cells. Western blot analysis suggested that SalB increased the phosphorylation of p38 MAPK and p53 in a dose-dependent manner. Moreover, blocking p38 activation by specific inhibitor SB203580 or p38 specific siRNA partly reversed the anti-proliferative and pro-apoptotic effects, and ROS production induced by SalB treatment. The anti-tumor activity of SalB in vivo was also demonstrated in U87 xenograft glioma model. All of these findings extended the anti-cancer effect of SalB in human glioma cell lines, and suggested that these inhibitory effects of SalB on U87 glioma cell growth might be associated with p38 activation mediated ROS generation. Thus, SalB might be concerned as an effective and safe natural anticancer agent for glioma prevention and treatment.


Assuntos
Apoptose/efeitos dos fármacos , Benzofuranos/farmacologia , Glioma/patologia , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzofuranos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Glioma/tratamento farmacológico , Glioma/enzimologia , Humanos , Camundongos , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA