Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 623(7987): 580-587, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37938769

RESUMO

Microsatellite repeat expansions within genes contribute to a number of neurological diseases1,2. The accumulation of toxic proteins and RNA molecules with repetitive sequences, and/or sequestration of RNA-binding proteins by RNA molecules containing expanded repeats are thought to be important contributors to disease aetiology3-9. Here we reveal that the adenosine in CAG repeat RNA can be methylated to N1-methyladenosine (m1A) by TRMT61A, and that m1A can be demethylated by ALKBH3. We also observed that the m1A/adenosine ratio in CAG repeat RNA increases with repeat length, which is attributed to diminished expression of ALKBH3 elicited by the repeat RNA. Additionally, TDP-43 binds directly and strongly with m1A in RNA, which stimulates the cytoplasmic mis-localization and formation of gel-like aggregates of TDP-43, resembling the observations made for the protein in neurological diseases. Moreover, m1A in CAG repeat RNA contributes to CAG repeat expansion-induced neurodegeneration in Caenorhabditis elegans and Drosophila. In sum, our study offers a new paradigm of the mechanism through which nucleotide repeat expansion contributes to neurological diseases and reveals a novel pathological function of m1A in RNA. These findings may provide an important mechanistic basis for therapeutic intervention in neurodegenerative diseases emanating from CAG repeat expansion.


Assuntos
Adenosina , Caenorhabditis elegans , Proteínas de Ligação a DNA , Drosophila melanogaster , Doenças Neurodegenerativas , RNA , Expansão das Repetições de Trinucleotídeos , Animais , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , RNA/química , RNA/genética , RNA/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Citoplasma/metabolismo , Modelos Animais de Doenças
2.
J Proteome Res ; 22(4): 1339-1346, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36852893

RESUMO

The generation of deoxyinosine (dI) in DNA is one of the most important sources of genetic mutations, which may lead to cancer and other human diseases. A further understanding of the biological consequences of dI necessitates the identification and functional characterizations of dI-binding proteins. Herein, we employed a mass spectrometry-based proteomics approach to detect the cellular proteins that may sense the presence of dI in DNA. Our results demonstrated that human mitochondrial heat shock protein 60 (HSPD1) can interact with dI-bearing DNA. We further demonstrated the involvement of HSPD1 in the sodium nitrite-induced DNA damage response and in the modulation of dI levels in vitro and in human cells. Together, these findings revealed HSPD1 as a novel dI-binding protein that may play an important role in the mitochondrial DNA damage control in human cells.


Assuntos
Chaperonina 60 , Proteínas Mitocondriais , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , DNA , Reparo do DNA
3.
Anal Chem ; 94(33): 11627-11632, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35942621

RESUMO

Deoxyinosine (dI) is a highly mutagenic lesion that preferentially pairs with deoxycytidine during replication, which may induce A to G transition and ultimately contribute to carcinogenesis. Therefore, finding the site of dI modification in DNA is of great value for both basic research and clinical applications. Herein, we developed a novel method to sequence the dI modification site in DNA, which utilizes endonuclease V (EndoV)-dependent deamination repair to specifically label the modification site with biotin-14-dATP that allows the affinity enrichment of dI-bearing DNA for sequencing. We have achieved efficient determination of the location of the modified nucleotide in dI-bearing plasmid DNA with the assistance of EndoV-dependent deamination repair. We have also successfully applied this approach to locate the dI modification sites in the mitochondrial DNA of human cells. Our method should be generally applicable for genome-wide sequencing analysis of dI modifications in living organisms.


Assuntos
DNA , Desoxirribonuclease (Dímero de Pirimidina) , DNA/genética , Reparo do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Humanos , Inosina/análogos & derivados
4.
ACS Chem Biol ; 17(8): 2315-2319, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35815634

RESUMO

DNA polymerase (Pol) ν and Pol θ are two specialized A-family DNA polymerases that function in the translesion synthesis of certain DNA lesions. However, the biological functions of human Pols ν and θ in cellular replicative bypass of 8-oxo-7,8-dihydroguanine (8-oxoG), an important carcinogenesis-related biomarker of oxidative DNA damage, remain unclear. Herein, we showed that depletion of Pols ν and θ in human cells could cause an elevated hypersensitivity to oxidative stress induced by hydrogen peroxide. Using next-generation sequencing-based lesion bypass and mutagenesis assay, we further demonstrated that Pols ν and θ had important roles in promoting translesion synthesis of 8-oxoG in human cells. We also found that the depletion of Pol ν, but not Pol θ, caused a substantial reduction in G → T mutation frequency for 8-oxoG. These findings provided novel insights into the involvement of A-family DNA polymerases in oxidative DNA damage response.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/genética , Guanina/análogos & derivados , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , DNA Polimerase teta
5.
Chem Res Toxicol ; 34(7): 1814-1821, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34213887

RESUMO

Tamoxifen has been used for years for treating estrogen receptor-positive breast cancer; drug resistance, however, constitutes one of the main challenges for this therapy. We found that the protein expression level of ATF3 is significantly higher in tamoxifen-resistant (TamR) MCF-7 cells than the corresponding parental cancer cells. In addition, ATF3 protein expression is positively correlated with the resistance of TamR MCF-7 cells to 4-hydroxytamoxifen (4-OHT). Mechanistically, elevated ATF3 protein expression in TamR MCF-7 cells results from a lower level of expression of YTHDF2, an m6A reader protein, and the ensuing stabilization and increased translational efficiency of ATF3 mRNA. Additionally, TamR MCF-7 cells exhibited decreased methylation at A131, a consensus motif site for m6A, in the 5'-untranslated region (5'-UTR) of ATF3 mRNA. Moreover, augmented ATF3 stimulates the expression of ABCB1, an efflux pump that confers drug resistance in breast cancer cells, and ATF3 itself is also positively regulated by adenylate kinase 4. Together, our results uncovered a novel molecular target for m6A modification (i.e., ATF3 mRNA) and the epitranscriptomic regulator for this target (i.e., YTHDF2). We also illustrated the role of ATF3 in drug resistance, revealed its downstream target (i.e., ABCB1), and suggested ATF3 as a candidate therapeutic target for overcoming drug resistance in cancer cells.


Assuntos
Fator 3 Ativador da Transcrição/genética , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Tamoxifeno/farmacologia , Adenosina/análogos & derivados , Adenosina/genética , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , RNA Mensageiro/genética
6.
Biochem Biophys Res Commun ; 546: 54-58, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33561748

RESUMO

Protein α-N-methylation is an evolutionarily conserved type of post-translational modification; however, little is known about the regulatory mechanisms for this modification. Methylation at the N6 position of adenosine in mRNAs is dynamic and modulates their stability, splicing, and translational efficiency. Here, we found that the expression of N-terminal methyltransferase 1 (NTMT1) protein is altered by depletion of those genes encoding the reader/writer/eraser proteins of N6-methyladenosine (m6A). We also observed that MRG15 is N-terminally methylated by NTMT1, and this methylation could also be modulated by reader/writer/eraser proteins of m6A. Together, these results revealed a novel m6A-based epitranscriptomic mechanism in regulating protein N-terminal methylation.


Assuntos
Adenosina/análogos & derivados , Epigênese Genética , Metiltransferases/genética , Metiltransferases/metabolismo , Transcriptoma , Adenosina/metabolismo , Células HEK293 , Humanos , Metilação , Metiltransferases/biossíntese , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
7.
Mol Ther ; 28(12): 2593-2604, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-32956623

RESUMO

N6-methyladenosine (m6A) is the most abundant internal modification in mRNA and this methylation constitutes an important regulatory mechanism for the stability and translational efficiency of mRNA. In this study, we found that the protein levels of adenylate kinase 4 (AK4) and m6A writer METTL3 are significantly higher in tamoxifen-resistant (TamR) MCF-7 cells than in parental cells. The TamR MCF-7 cells also exhibit increased methylation at multiple m6A consensus motif sites in the 5' untranslated region (5' UTR) of AK4 mRNA, and genetic depletion of METTL3 in TamR MCF-7 cells led to a diminished AK4 protein level and attenuated resistance to tamoxifen. In addition, we observed augmented levels of reactive oxygen species (ROS) and p38 activity in TamR MCF-7 cells, and both are diminished upon genetic depletion of AK4. Reciprocally, overexpression of AK4 in MCF-7 cells stimulates ROS and p38 phosphorylation levels, and it suppresses mitochondrial apoptosis. Moreover, scavenging of intracellular ROS leads to reduced p38 activity and re-sensitizes TamR MCF-7 cells to tamoxifen. Thus, our results uncover a novel m6A-mediated epitranscriptomic mechanism for the regulation of AK4, illustrate the cellular pathways through which increased AK4 expression contributes to tamoxifen resistance, and reveal AK4 as a potential therapeutic target for overcoming tamoxifen resistance.


Assuntos
Adenosina/análogos & derivados , Adenilato Quinase/metabolismo , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Metiltransferases/metabolismo , Tamoxifeno/farmacologia , Adenosina/metabolismo , Adenilato Quinase/genética , Apoptose/genética , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Metilação , Metiltransferases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/genética , Transfecção
8.
Mol Cell Proteomics ; 18(11): 2273-2284, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31519767

RESUMO

Tamoxifen has been clinically used in treating estrogen receptor (ER)-positive breast cancer for over 30 years. The most challenging aspect associated with tamoxifen therapy is the development of resistance in initially responsive breast tumors. We applied a parallel-reaction monitoring (PRM)-based quantitative proteomic method to examine the differential expression of kinase proteins in MCF-7 and the isogenic tamoxifen-resistant (TamR) cells. We were able to quantify the relative protein expression levels of 315 kinases, among which hexokinase 2 (HK2) and mTOR were up-regulated in TamR MCF-7 cells. We also observed that the TamR MCF-7 cells exhibited elevated rate of glycolysis than the parental MCF-7 cells. In addition, we found that phosphorylation of S6K - a target of mTOR - was much lower in TamR MCF-7 cells, and this phosphorylation level could be restored upon genetic depletion or pharmacological inhibition of HK2. Reciprocally, the level of S6K phosphorylation was diminished upon overexpression of HK2 in MCF-7 cells. Moreover, we observed that HK2 interacts with mTOR, and this interaction inhibits mTOR activity. Lower mTOR activity led to augmented autophagy, which conferred resistance of MCF-7 cells toward tamoxifen. Together, our study demonstrates that elevated expression of HK2 promotes autophagy through inhibiting the mTOR-S6K signaling pathway and results in resistance of MCF-7 breast cancer cells toward tamoxifen; thus, our results uncovered, for the first time, HK2 as a potential therapeutic target for overcoming tamoxifen resistance.


Assuntos
Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos , Hexoquinase/metabolismo , Proteoma/análise , Serina-Treonina Quinases TOR/metabolismo , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Células MCF-7 , Fosforilação , Prognóstico , Taxa de Sobrevida
9.
Nat Commun ; 10(1): 3613, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399576

RESUMO

Small-molecule inhibitors for the 90-kDa heat shock protein (HSP90) have been extensively exploited in preclinical studies for the therapeutic interventions of human diseases accompanied with proteotoxic stress. By using an unbiased quantitative proteomic method, we uncover that treatment with three HSP90 inhibitors results in elevated expression of a large number of heat shock proteins. We also demonstrate that the HSP90 inhibitor-mediated increase in expression of DNAJB4 protein occurs partly through an epitranscriptomic mechanism, and is substantially modulated by the writer, eraser, and reader proteins of N6-methyladenosine (m6A). Furthermore, exposure to ganetespib leads to elevated modification levels at m6A motif sites in the 5'-UTR of DNAJB4 mRNA, and the methylation at adenosine 114 site in the 5'-UTR promotes the translation of the reporter gene mRNA. This m6A-mediated mechanism is also at play upon heat shock treatment. Cumulatively, we unveil that HSP90 inhibitors stimulate the translation of DNAJB4 through an epitranscriptomic mechanism.


Assuntos
Adenosina/análogos & derivados , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteômica , Regiões 5' não Traduzidas , Adenosina/metabolismo , Linhagem Celular Tumoral , Genes Reporter , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP90/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Metilação , RNA Mensageiro/metabolismo , Triazóis
10.
Anal Chem ; 90(11): 6380-6384, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29791134

RESUMO

N1-methyladenosine (m1A) is an important post-transcriptional modification in RNA; however, the exact biological role of m1A remains to be determined. By employing a quantitative proteomics method, we identified multiple putative protein readers of m1A in RNA, including several YTH domain family proteins. We showed that YTHDF1-3 and YTHDC1, but not YTHDC2, could bind directly to m1A in RNA. We also found that Trp432 in YTHDF2, a conserved residue in the hydrophobic pocket of the YTH domain that is necessary for its binding to N6-methyladenosine (m6A), is required for its recognition of m1A. An analysis of previously published data revealed transcriptome-wide colocalization of YTH domain-containing proteins and m1A sites in HeLa cells, suggesting that YTH domain-containing proteins can bind to m1A in cells. Together, our results uncovered YTH domain-containing proteins as readers for m1A in RNA and provided new insight into the functions of m1A in RNA biology.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina/análogos & derivados , Proteínas do Tecido Nervoso/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Adenosina/química , Adenosina/metabolismo , Adenosina Trifosfatases/química , Sítios de Ligação , Células HEK293 , Células HeLa , Humanos , Proteínas do Tecido Nervoso/química , Ligação Proteica , Domínios Proteicos , RNA/química , RNA Helicases , Fatores de Processamento de RNA/química , Proteínas de Ligação a RNA/química
11.
Exp Cell Res ; 359(2): 337-341, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28807789

RESUMO

Kashin-Beck disease (KBD) is a chronic, endemic osteochondropathy. Its etiopathogenesis is still obscure until now. Epidemiological observation has shown that low selenium play a crucial role in the pathogenesis of KBD. Extracellular signal-regulated kinases (ERKs) and C-Jun N-terminal kinase (JNK), members of the mitogen-activated protein kinase (MAPK) superfamily, play an important role in cell proliferation and differentiation. Nuclear factor-ĸB (NF-ĸB), an important signaling mediator for inflammatory and immune responses, is involved in the regulation of osteoclastogenesis. In the present study, we investigated the expression of ERK and JNK signal molecular, as well as nuclear factor-ĸB in the pathogenesis of Kashin-Beck disease, evaluated the effect of selenium on ERK signal pathway. The expression levels of ERK and JNK signal pathway, as well as nuclear factor-ĸB were investigated for 218 patients and 209 controls by immunoblot analysis in whole blood. Evaluated the effect of selenium on ERK signal pathway by Na2SeO3 treatment. The protein levels of pRaf-1, pMek1/2 and pErk1/2 decreased significantly in KBD patients, p-JNK and NF-ĸB increased in KBD patients. Furthermore, Na2SeO3 treatment improved the reduction of proteins in ERK signal pathway. These findings indicated that ERK and JNK signaling pathways, as well as the expression level of NF-κB signaling molecular are important contributor to the pathogenesis of KBD. Selenium stimulates the phosphorylation of the ERK signaling pathway.


Assuntos
Cartilagem Articular/metabolismo , Doença de Kashin-Bek/genética , MAP Quinase Quinase 4/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , NF-kappa B/genética , Selênio/deficiência , Cartilagem Articular/patologia , Estudos de Casos e Controles , Linhagem Celular , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Doença de Kashin-Bek/metabolismo , Doença de Kashin-Bek/patologia , MAP Quinase Quinase 1/genética , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/genética , MAP Quinase Quinase 2/metabolismo , MAP Quinase Quinase 4/metabolismo , Masculino , Pessoa de Meia-Idade , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-raf/genética , Proteínas Proto-Oncogênicas c-raf/metabolismo , Transdução de Sinais , Selenito de Sódio/farmacologia , terc-Butil Hidroperóxido/antagonistas & inibidores , terc-Butil Hidroperóxido/farmacologia
12.
Nucleic Acids Res ; 45(15): 9059-9067, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28591780

RESUMO

Reversible methylation of the N6 or N1 position of adenine in RNA has recently been shown to play significant roles in regulating the functions of RNA. RNA can also be alkylated upon exposure to endogenous and exogenous alkylating agents. Here we examined how regio-specific methylation at the hydrogen bonding edge of adenine and guanine in mRNA affects translation. When situated at the third codon position, the methylated nucleosides did not compromise the speed or accuracy of translation under most circumstances. When located at the first or second codon position, N1-methyladenosine (m1A) and m1G constituted robust blocks to both Escherichia coli and wheat germ extract translation systems, whereas N2-methylguanosine (m2G) moderately impeded translation. While m1A, m2G and N6-methyladenosine (m6A) did not perturb translational fidelity, O6-methylguanosine (m6G) at the first and second codon positions was strongly and moderately miscoding, respectively, and it was decoded as an adenosine in both systems. The effects of methylated ribonucleosides on translation could be attributed to the methylation-elicited alterations in base pairing properties of the nucleobases, and the mechanisms of ribosomal decoding contributed to the position-dependent effects. Together, our study afforded important new knowledge about the modulation of translation by methylation of purine nucleobases in mRNA.


Assuntos
Adenosina/análogos & derivados , Guanosina/análogos & derivados , Biossíntese de Proteínas , RNA Mensageiro/química , Adenosina/química , Adenosina/metabolismo , Sequência de Aminoácidos , Pareamento de Bases , Sequência de Bases , Códon , Escherichia coli/química , Escherichia coli/genética , Guanosina/química , Guanosina/metabolismo , Metilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estereoisomerismo , Triticum/química , Triticum/genética
13.
ACS Chem Biol ; 11(5): 1332-8, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26930515

RESUMO

Environmental and endogenous genotoxic agents can result in a variety of alkylated and carboxymethylated DNA lesions, including N3-ethylthymidine (N3-EtdT), O(2)-EtdT, and O(4)-EtdT as well as N3-carboxymethylthymidine (N3-CMdT) and O(4)-CMdT. By using nonreplicative double-stranded vectors harboring a site-specifically incorporated DNA lesion, we assessed the potential roles of alkyladenine DNA glycosylase (Aag); alkylation repair protein B homologue 2 (Alkbh2); or Alkbh3 in modulating the effects of N3-EtdT, O(2)-EtdT, O(4)-EtdT, N3-CMdT, or O(4)-CMdT on DNA transcription in mammalian cells. We found that the depletion of Aag did not significantly change the transcriptional inhibitory or mutagenic properties of all five examined lesions, suggesting a negligible role of Aag in the repair of these DNA adducts in mammalian cells. In addition, our results revealed that N3-EtdT, but not other lesions, could be repaired by Alkbh2 and Alkbh3 in mammalian cells. Furthermore, we demonstrated the direct reversal of N3-EtdT by purified human Alkbh2 protein in vitro. These findings provided important new insights into the repair of the carboxymethylated and alkylated thymidine lesions in mammalian cells.


Assuntos
Homólogo AlkB 2 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Homólogo AlkB 3 da Dioxigenase Dependente de alfa-Cetoglutarato/metabolismo , Adutos de DNA/metabolismo , DNA Glicosilases/metabolismo , Alquilação , Animais , Linhagem Celular , Adutos de DNA/química , Adutos de DNA/genética , Reparo do DNA , Humanos , Camundongos , Timidina/análogos & derivados , Timidina/química , Timidina/genética , Timidina/metabolismo
14.
Br J Nutr ; 115(9): 1547-55, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26948765

RESUMO

The c-Jun N-terminal kinases (JNK) are members of the mitogen-activated protein kinase family and are activated by environmental stress. Se plays an important role in the biological pathways by forming selenoprotein. Selenoproteins have been shown to exhibit a variety of biological functions including antioxidant functions and maintaining cellular redox balance, and compromise of such important proteins would lead to oxidative stress and apoptosis. We examined the expression levels of JNK in Kashin-Beck disease (KBD) patients, tested the potential protective effects of sodium selenite on tert-butyl hydroperoxide (tBHP)-induced oxidative injury and apoptosis in human chondrocytes as well as its underlying mechanism in this study. We produced an oxidative damage model induced by tBHP in C28/I2 human chondrocytes to test the essential anti-apoptosis effects of Se in vitro. The results indicated that the expression level of phosphorylated JNK was significantly increased in KBD patients. Cell apoptosis was increased and molecule expressions of the JNK signalling pathway were activated in the tBHP-injured chondrocytes. Na2SeO3 protected against tBHP-induced oxidative stress and apoptosis in cells by increasing cell viability, reducing reactive oxygen species generation, increasing Glutathione peroxidase (GPx) activity and down-regulating the JNK pathway. These results demonstrate that apoptosis induced by tBHP in chondrocytes might be mediated via up-regulation of the JNK pathway; Na2SeO3 has an effect of anti-apoptosis by down-regulating the JNK signalling pathway.


Assuntos
Condrócitos/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Doença de Kashin-Bek/metabolismo , Sistema de Sinalização das MAP Quinases , Osteoartrite/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Selenito de Sódio/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/metabolismo , Regulação para Baixo , Glutationa Peroxidase/metabolismo , Humanos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Selênio/farmacologia , Transdução de Sinais , Regulação para Cima , terc-Butil Hidroperóxido
15.
J Am Chem Soc ; 136(37): 12884-7, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25170678

RESUMO

Arsenic is a widespread environmental contaminant. However, the exact molecular mechanisms underlying the carcinogenic effects of arsenic remain incompletely understood. Core histones can be ubiquitinated by RING finger E3 ubiquitin ligases, among which the RNF20-RNF40 heterodimer catalyzes the ubiquitination of histone H2B at lysine 120. This ubiquitination event is important for the formation of open and biochemically accessible chromatin fiber that is conducive for DNA repair. Herein, we found that arsenite could bind directly to the RING finger domains of RNF20 and RNF40 in vitro and in cells, and treatment with arsenite resulted in substantially impaired H2B ubiquitination in multiple cell lines. Exposure to arsenite also diminished the recruitment of BRCA1 and RAD51 to laser-induced DNA double-strand break (DSB) sites, compromised DNA DSB repair in human cells, and rendered cells sensitive toward a radiomimetic agent, neocarzinostatin. Together, the results from the present study revealed, for the first time, that arsenite may exert its carcinogenic effect by targeting cysteine residues in the RING finger domains of histone E3 ubiquitin ligase, thereby altering histone epigenetic mark and compromising DNA DSB repair. Our results also suggest arsenite as a general inhibitor for RING finger E3 ubiquitin ligases.


Assuntos
Arsenitos/metabolismo , Carcinógenos/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Domínios RING Finger , Ubiquitina-Proteína Ligases/metabolismo , Linhagem Celular , Histonas/metabolismo , Humanos , Ubiquitina-Proteína Ligases/química , Ubiquitinação/efeitos dos fármacos
16.
J Biol Chem ; 289(23): 16046-56, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753253

RESUMO

DDB2 exhibits a high affinity toward UV-damaged DNA, and it is involved in the initial steps of global genome nucleotide excision repair. Mutations in the DDB2 gene cause the genetic complementation group E of xeroderma pigmentosum, an autosomal recessive disease manifested clinically by hypersensitivity to sunlight exposure and an increased predisposition to skin cancer. Here we found that, in human cells, the initiating methionine residue in DDB2 was removed and that the N-terminal alanine could be methylated on its α-amino group in human cells, with trimethylation being the major form. We also demonstrated that the α-N-methylation of DDB2 is catalyzed by the N-terminal RCC1 methyltransferase. In addition, a methylation-defective mutant of DDB2 displayed diminished nuclear localization and was recruited at a reduced efficiency to UV-induced cyclobutane pyrimidine dimer foci. Moreover, loss of this methylation conferred compromised ATM (ataxia telangiectasia mutated) activation, decreased efficiency in cyclobutane pyrimidine dimer repair, and elevated sensitivity of cells toward UV light exposure. Our study provides new knowledge about the posttranslational regulation of DDB2 and expands the biological functions of protein α-N-methylation to DNA repair.


Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Sequência de Aminoácidos , Aminoácidos/química , Sequência de Bases , Western Blotting , Primers do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Citometria de Fluxo , Células HEK293 , Humanos , Metilação , Reação em Cadeia da Polimerase em Tempo Real
17.
Clin Res Hepatol Gastroenterol ; 38(3): 318-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24417970

RESUMO

BACKGROUND AND AIMS: To clarify the role of miR-23a in the onset and development of hepatocarcinoma on the cellular, genetic and molecular levels. PATIENTS AND METHODS: Seventy-eight patients were included after hepatectomy. Relationships between the clinical pathological factors of tumor and paracancerous tissues were analyzed. Risk factors of overall and recurrence-free survival rates were subject to multi-variable analysis. Tissues were sequenced by digital miRNA expression profiling, and new miRNA was subject to target gene prediction. RESULTS: miR-23a expression was correlated with the stage of the TNM Classification of Malignant Tumours most significantly, followed by tumor size (P=0.041 and 0.047). High miR-23a, vascular invasion, tumor size≥7cm, tumor capsule and late pathological stage were the risk factors of overall survival rate, and those of recurrence-free survival rate also included alpha-fetoprotein level≥200µg/L and multiple tumors. Compared with normal hepatic cell line L-02, the miR-23a expression levels in tumor cell lines SMMC-7721 and HepG2 were up-regulated and down-regulated respectively. Transfecting miR-23a inhibitor suppressed cell growth. Apoptotic rates of the control and those transfected with inhibitor-NC and miR-23a inhibitor for 48h were similar. CONCLUSION: High miR-23a expression is the independent prognostic factor of overall and recurrence-free survival rates, and miR-23a may be involved in the onset of hepatocarcinoma as an oncogene.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , MicroRNAs/metabolismo , Idoso , Idoso de 80 Anos ou mais , Apoptose , Linhagem Celular , Regulação para Baixo , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fígado/patologia , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco , Regulação para Cima , alfa-Fetoproteínas/análise
18.
J Biol Chem ; 287(49): 40915-23, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23076150

RESUMO

Thiopurine drugs are extensively used as chemotherapeutic agents in clinical practice, even though there is concern about the risk of therapy-related cancers. It has been previously suggested that the cytotoxicity of thiopurine drugs involves their metabolic activation, the resultant generation of 6-thioguanine ((S)G) and S(6)-methylthioguanine (S(6)mG) in DNA, and the futile mismatch repair triggered by replication-induced (S)G:T and S(6)mG:T mispairs. Disruption of transcription is known to be one of the major consequences of DNA damage induced by many antiviral and antitumor agents; however, it remains undefined how (S)G and S(6)mG compromise the efficiency and fidelity of transcription. Using our recently developed competitive transcription and adduct bypass assay, herein we examined the impact of (S)G and S(6)mG on transcription in vitro and in human cells. Our results revealed that, when situated on the transcribed strand, S(6)mG exhibited both inhibitory and mutagenic effects during transcription mediated by single-subunit T7 RNA polymerase or multisubunit human RNA polymerase II in vitro and in human cells. Moreover, we found that the impact of S(6)mG on transcriptional efficiency and fidelity is modulated by the transcription-coupled nucleotide excision repair capacity. In contrast, (S)G did not considerably compromise the efficiency or fidelity of transcription, and it was a poor substrate for NER. We propose that S(6)mG might contribute, at least in part, to thiopurine-mediated cytotoxicity through inhibition of transcription and to potential therapy-related carcinogenesis via transcriptional mutagenesis.


Assuntos
Tioguanina/análogos & derivados , Tioguanina/farmacologia , Transcrição Gênica , Antimetabólitos Antineoplásicos/farmacologia , Cromatografia Líquida/métodos , DNA/efeitos dos fármacos , Dano ao DNA , Reparo do DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Fibroblastos/metabolismo , Guanina/química , Células HEK293 , Humanos , Técnicas In Vitro , Modelos Químicos , Mutagênese , Mutação , Fosforilação , RNA/metabolismo , Espectrometria de Massas em Tandem/métodos , Proteínas Virais/metabolismo
19.
Mol Cell Proteomics ; 11(7): M111.016915, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22398368

RESUMO

5-Aza-2'-deoxycytidine (5-Aza-CdR), a nucleoside analog that can inhibit DNA cytosine methylation, possesses potent antitumorigenic activities for myeloid disorders. Although 5-Aza-CdR is known to be incorporated into DNA and inhibit DNA (cytosine-5)-methyltransferases, the precise mechanisms underlying the drug's antineoplastic activity remain unclear. Here we utilized a mass spectrometry-based quantitative proteomic method to analyze the 5-Aza-CdR-induced perturbation of protein expression in Jurkat-T cells at the global proteome scale. Among the ≈ 2780 quantified proteins, 188 exhibited significant alteration in expression levels upon a 24-hr treatment with 5 µm 5-Aza-CdR. In particular, we found that drug treatment led to substantially reduced expression of farnesyl diphosphate synthase (FDPS) and farnesyl diphosphate farnesyltransferase (FDFT1), two important enzymes involved in de novo cholesterol synthesis. Consistent with this finding, 5-Aza-CdR treatment of leukemia (Jurkat-T, K562 and HL60) and melanoma (WM-266-4) cells led to a marked decrease in cellular cholesterol content and pronounced growth inhibition, which could be rescued by externally added cholesterol. Exposure of these cells to 5-Aza-CdR also led to epigenetic reactivation of dipeptidyl peptidase 4 (DPP4) gene. Additionally, suppression of DPP4 expression with siRNA induced elevated protein levels of FDPS and FDFT1, and increased cholesterol biosynthesis in WM-266-4 cells. Together, the results from the present study revealed, for the first time, that 5-Aza-CdR exerts its cytotoxic effects in leukemia and melanoma cells through epigenetic reactivation of DPP4 gene and the resultant inhibition of cholesterol biosynthesis in these cells.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Azacitidina/análogos & derivados , Colesterol/biossíntese , Dipeptidil Peptidase 4/genética , Geraniltranstransferase/genética , Azacitidina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Decitabina , Dipeptidil Peptidase 4/metabolismo , Epigênese Genética/efeitos dos fármacos , Farnesil-Difosfato Farnesiltransferase/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Geraniltranstransferase/antagonistas & inibidores , Geraniltranstransferase/metabolismo , Células HL-60 , Humanos , Células Jurkat , Células K562 , Espectrometria de Massas , Melanoma , Proteômica , RNA Interferente Pequeno/genética
20.
Biomed Environ Sci ; 23(4): 267-72, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20934113

RESUMO

OBJECTIVE: To evaluate the relationship of expressions of nucleoside diphosphate kinase (nm23) and proliferating cell nuclear antigen (PCNA), as well as apoptosis, with the prognosis of HCC patients by analyzing their pathological and clinical data. METHODS: The expressions of nm23 and PCNA were analyzed by immunohistochemistry and the apoptotic phenomena were detected by TUNEL technique in the liver samples from 43 HCC tissues, 39 para-neoplastic tissues, and 10 normal tissues. The mean apoptosis index (AI) and proliferative index (PI) in individual sample were calculated. RESULTS: As shown by the detection, 32.6% of carcinomas had negative nm23 signal in tumor tissues, whereas all para-neoplastic and normal tissues had positive nm23. The AI in nm23 positive HCC was significantly higher than that in nm23 negative one, with statistical difference (P<0.05). Furthermore, the expressions of nm23, and the values of AI and PI were contrastively analyzed with some main pathological and clinical data of HCC. It revealed that HCC with extrahepatic metastasis showed remarkable correlation with the negative nm23 (P=0.013) and higher PI values of HCC (P=0.015). The disease-free survival in HCC patients with negative nm23 expression was significantly poorer than that in patients with positive nm23 expression. CONCLUSIONS: These data suggest that expressions of nm23 protein in tumor tissues are correlated with occurrences of metastasis and length of survival of the HCC patients, which may be an indicator for their prognosis.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas/enzimologia , Fígado/enzimologia , Nucleosídeo NM23 Difosfato Quinases/biossíntese , Adulto , Idoso , Apoptose , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Estudos de Casos e Controles , Proliferação de Células , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Estimativa de Kaplan-Meier , Fígado/patologia , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Antígeno Nuclear de Célula em Proliferação/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA