Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 193(Pt 1): 202-212, 2022 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-36228830

RESUMO

Ferroptosis is a novel form of regulated cell death characterized by the iron-dependent accumulation of lipid peroxides to lethal levels, which is morphologically, biochemically, and genetically distinct from apoptosis, necroptosis, autophagy, and pyroptosis. Manganese play an important role in innate immunity and antitumor immunity. Many manganese-based nanomaterials induce tumor cell death by catalyzing the production of reactive oxygen species (ROS) within the tumor. However, the exact underlying mechanisms remain unclear. As research on ferroptosis advances and its regulatory mechanisms in tumors continue to be refined, more evidence has suggested that triggering ferroptosis in tumor cells is an effective strategy for tumor treatment. In this study, we found that administration of MnCl2 to tumor cells resulted in lipid peroxidation and increased the levels of mitochondrial ROS, consequently leading to ferroptosis. Dihydroorotate dehydrogenase (DHODH)-mediated ferroptosis defence is a targetable vulnerability in cancer. We show that MnCl2 downregulated DHODH expression in tumor cells, resulting in increased mitochondrial ROS and lipid peroxidation to induce ferroptosis. In addition, MnCl2 enhanced the phosphorylation levels of STING, TBK1, and IRF3 and upregulated the expression of type-I interferon (IFN), produced by the cGAS-STING signaling pathway. When inhibiting the cGAS-STING signaling pathway or type-I IFN, DHODH expression was restored, reversing lipid peroxidation and ROS production and rescuing MnCl2-induced ferroptosis.. Knockout of IFNAR1 or overexpression of DHODH weakens the antitumor effect of MnCl2. Mechanistically, these results revealed that Manganese treatment-activated cGAS-STING signaling promote mitochondrial lipid peroxidation and ROS production by releasing type-I IFNs that reduce DHODH function and thereby inducing ferroptosis in tumor cells. This may provide a new strategy to complement existing antitumor treatment regimens.


Assuntos
Ferroptose , Ferroptose/genética , Espécies Reativas de Oxigênio/metabolismo , Manganês/farmacologia , Di-Hidro-Orotato Desidrogenase , Nucleotidiltransferases/metabolismo
2.
Oncol Rep ; 45(2): 493-500, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416157

RESUMO

Epidermal growth factor receptor (EGFR) is overexpressed in various tumors and is associated with cancer initiation, progression, and poor prognosis. Despite the achievements made by tyrosine kinase inhibitors and monoclonal antibodies in certain cases, many patients have not benefited from such treatment due to resistance. Immunotoxins (ITs) are antibody­cytotoxin chimeric molecules with specific cell killing ability, which have achieved different degrees of success in the treatment of a wide range of cancers in clinical trials. The aim of the current study was to examine a novel targeting EGFR recombinant immunotoxin Bs/cucurmosin (CUS) generated by fusing CUS to the EGFR­specific nanobody 7D12­9G8. Bs/CUS was successfully expressed in Escherichia coli strain BL21 (DE3) in a soluble form. Furthermore, it retained binding capacity and specificity with EGFR and was superior to rE/CUS, a monospecific IT we reported previously. In vitro results showed that Bs/CUS could be internalized into the cytoplasm and selectively kill cells in the picomolar range. Flow cytometry showed that Bs/CUS killed the cells mediated by the apoptosis pathway. Taken together, results of the current study indicated that Bs/CUS is a promising candidate that should be further evaluated as a cancer therapeutic for the treatment of EGFR­positive tumors.


Assuntos
Imunotoxinas/farmacologia , Neoplasias/tratamento farmacológico , Proteínas de Plantas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Animais , Anticorpos Biespecíficos/genética , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Humanos , Imunotoxinas/genética , Imunotoxinas/uso terapêutico , Neoplasias/patologia , Proteínas de Plantas/genética , Proteínas de Plantas/uso terapêutico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA